首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   13篇
  国内免费   6篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   4篇
  2016年   5篇
  2015年   2篇
  2014年   25篇
  2013年   12篇
  2012年   8篇
  2011年   12篇
  2010年   7篇
  2009年   9篇
  2008年   4篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  1999年   3篇
排序方式: 共有163条查询结果,搜索用时 109 毫秒
141.
Vascular endothelial growth factor (VEGF), plays a key role in angiogenesis. Many endogenous factors can affect angiogenesis in endothelial cells. VEGF is known to be a strong migration, sprouting, survival, and proliferation factor for endothelial cells during angiogenesis in endothelial cells. Searching for novel genes, involved in VEGF signaling during angiogenesis, we carried out differential display polymerase chain reaction on RNA from VEGF-stimulated human umbilical vein endothelial cells (HUVECs). In this study, follistatin (FS) differentially expressed in VEGF-treated HUVECs, compared with controls. Addition of VEGF (10 ng/mL) produced an approximately 11.8-fold increase of FS mRNA. FS or VEGF produced approximately 1.8- or 2.9-fold increases, respectively, in matrix metalloproteinase-2 (MMP-2) secretion for 12 h, compared to the addition of a control buffer. We suggest that VEGF may affect the angiogenic effect of HUVECs, through a combination of the direct effects of VEGF itself, and the indirect effects mediated via induction of FSin vitro.  相似文献   
142.
Jagannathan L  Swaminathan K  Kumar SM  Kumar GR  Dey A 《Gene》2012,494(1):130-139
Alcohol induced liver injury has been studied extensively. Using literature search and bioinformatics tools, the present study characterizes the genes involved in alcohol induced liver injury. The cellular and metabolic processes in which genes involved in alcohol induced liver injury are implicated are also discussed. The genes related to alcohol induced liver injury are also involved in affecting certain molecular functions and metabolism of drugs, besides being associated with diseases. In conclusion, the changes in regulation of genes implicated in alcohol induced liver injury apart from causing alcohol mediated hepatic dysfunction may affect other vital processes in the body.  相似文献   
143.
Neuroglial cells are fundamental for control of brain homeostasis and synaptic plasticity. Decades of pathological and physiological studies have focused on neurons in neurodegenerative disorders, but it is becoming increasingly evident that glial cells play an irreplaceable part in brain homeostasis and synaptic plasticity. Animal models of brain injury and neurodegenerative diseases have largely contributed to current understanding of astrocyte-specific mechanisms participating in brain function and neurodegeneration. Specifically, gliotransmission (presence of glial neurotransmitters, and their receptors and active transporters), trophic support (release, maturation and degradation of neurotrophins) and metabolism (production of lactate and GSH components) are relevant aspects of astrocyte function in neuronal metabolism, synaptic plasticity and neuroprotection. Morpho-functional changes of astrocytes and microglial cells after traumatic or toxic insults to the central nervous system (namely, reactive gliosis) disrupt the complex neuro-glial networks underlying homeostasis and connectivity within brain circuits. Thus, neurodegenerative diseases might be primarily regarded as gliodegenerative processes, in which profound alterations of glial activation have a clear impact on progression and outcomes of neuropathological processes. This review provides an overview of current knowledge of astrocyte functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders.  相似文献   
144.
Osteoarthritis (OA), an age‐related degenerative joint disease, is pathologically characterized by articular cartilage degeneration and synovial inflammation. Nephroblastoma overexpressed (NOV or CCN3), a matricellular protein, is a primary member of the CCN family (Cyr61, Ctgf, NOV) of proteins and is involved in various inflammatory disorders. Previous studies reported that CCN3 might play a therapeutic role in OA. However, the underlying mechanism remains unclear. In this study, we confirmed the expression of CCN3 was decreased in human and rat OA articular cartilage. Recombinant CCN3 ameliorated the IL‐1β‐induced matrix catabolism, as demonstrated by MMP1, MMP3, MMP13, ADAMTS5 and iNOS expression, in vitro. In addition, the degradation of cartilage matrix such as collagen 2 and aggrecan could be reversed by CCN3. Furthermore, we found CCN3 promoted autophagy as Atg5, Beclin1 and LC3‐II expression were increased. High‐mobility group box 1 was negatively correlated with CCN3 in IL‐1β‐induced osteoarthritis responses, and HMGB1 is involved in the protective effect of CCN3 in OA. Moreover, CCN3 overexpression decreased the expression of HMGB1 and reversed the IL‐1β induced MMPs production. Additionally, recombinant CCN3 or CCN3 overexpression attenuated the activation of PI3K/AKT/mTOR pathway induced by IL‐1β. Our study presents new mechanisms of CCN3 in osteoarthritis and indicates that CCN3 can serve as a novel potential therapeutic target for osteoarthritis.  相似文献   
145.
146.
147.
Pulmonary arterial hypertension (PAH) is a complex and multifactorial disease characterized by vascular remodeling, vasoconstriction, inflammation and thrombosis. Although the available therapies have resulted in improvements in morbidity and survival, PAH remains a severe and devastating disease with a poor prognosis and a high mortality, justifying the need of novel therapeutic targets. An increasing number of studies have demonstrated that endothelial cells (ECs), smooth muscle cells (SMCs) and fibroblasts of the pulmonary vessel wall, as well as platelets and inflammatory cells have a role in PAH pathogenesis. This review aims to integrate the interplay among different types of cells, during PAH development and progression, and the impact of current therapies in cellular modulation. The interplay among endothelial cells, smooth muscle cells and fibroblasts present in pulmonary vessels wall, platelets and inflammatory cells is regulated by several mediators produced by these cells, contributing to the pathophysiologic features of PAH. Current therapies are mainly focused in the pulmonary vascular tone and in the endothelial dysfunction. However, once they have not been effective, novel therapies targeting other PAH features, such as inflammation and platelet dysfunction are emerging. Further understanding of the interplay among different vascular cell types involved in PAH development and progression can contribute to find novel therapeutic targets, decreasing PAH mortality and morbidity in the future.  相似文献   
148.

Background

Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM.

Scope of review

The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted.

Major conclusions

Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease.

Significance

ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   
149.
150.
Background: There are no data about the role of MMPs polymorphism in development of osteosarcoma.

Patients and methods: Two-hundred fifty-one patients with osteosarcoma and 251 healthy controls were included to investigate the association between the MMP2, 3, 9 polymorphisms and the risk of osteosarcoma.

Results: Compared with the MMP2 SNP rs243865 homozygote CC, The heterozygous CT genotype was associated with significantly increased risk for osteosarcoma (OR?=?1.86, 95% CI?=?1.18–4.22, p?=?0.014); the TT genotype was associated with increased risk for osteosarcoma (OR?=?1.92, 95% CI?=?1.21–3.52, p?=?0.028). However, the genotype and allele frequencies of MMP3 rs3025058 and MMP9 rs3918242 polymorphisms were not significantly different.

Conclusion: MMP2 rs243865 genotype was associated with increased risk for development of osteosarcoma in Chinese Han population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号