首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   3篇
  国内免费   1篇
  99篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   12篇
  2013年   14篇
  2012年   7篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2001年   1篇
  1996年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
51.
52.
Phenomena involving the disassembly of chromosomes to ∼50 kbp double-stranded fragments upon protein denaturing treatments of normal and apoptotic mammalian nuclei as well as yeast protoplasts may be an indication of special, hypersensitive regions positioned regularly at loop-size intervals in the eukaryotic chromatin. Here we show evidence in yeast cell systems that loop-size fragmentation can occur in any phase of the cell cycle and that the plating efficiency of these cells is ∼100%. The possibility of sequence specificity was investigated within the breakpoint cluster region (bcr) of the human MLL gene, frequently rearranged in certain leukemias. Our data suggest that DNA isolated from yeast cultures or mammalian cell lines carry nicks or secondary structures predisposing DNA for a specific nicking activity, at non-random positions. Furthermore, exposure of MLL bcr-carrying plasmid DNA to S1 nuclease or nuclear extracts or purified topoisomerase II elicited cleavages at the nucleotide positions of nick formation on human genomic DNA. These data support the possibility that certain sequence elements are preferentially involved in the cleavage processes responsible for the en masse disassembly of chromatin to loop-size fragments upon isolation of DNA from live eukaryotic cells.  相似文献   
53.
54.
55.
56.
Several recent molecular studies have begun to clarify the phylogeny of Acanthomorpha (Teleostei), a wide clade of teleost fishes. However, different molecular datasets do not agree on a single history of the taxa, probably because of marker-specific biases. The 'total-evidence' approach maximizes character congruence, but may be biased by a single robust, but non-phylogenetic constraint from one dataset. We have therefore taken the approach to analyse also each dataset separately prior to their combination, and detect repeated groups: signal common to markers is more probably a reflection of shared ancestry than marker-specific signal. Partial sequences (678+527 base pairs) of exons of the MLL gene (Mixed Lineage Leukaemia-like) gene were used, as well as the datasets of Chen et al. (ribosomal 28S, rhodopsin gene, mitochondrial 12S and 16S). Most of the repeated clades of Chen et al. are supported by the new dataset. Some new groups were repeatedly found: a Scarus-Labrus group (clade M), the presence of Gasterosteidae as a sister taxon or within the clade Zoarcoidei-Cottoidei (clade Is), Polymixia as a sister-group to the clade Zeoidei-Gadiformes (clade O), the clade Q grouping Mugiloidei, Cichlidae, Atherinomorpha, Blennioidei and Gobiesocoidei; and the interesting clade N, reducing potential sister-groups to Tetraodontiformes to either Caproidei, Lophiiformes, Acanthuroidei, Drepanidae, Chaetodontidae, and Pomacanthidae.  相似文献   
57.
The mixed lineage leukemia (MLL) gene encodes a very large nuclear protein homologous to Drosophila trithorax (trx). MLL is required for the proper maintenance of HOX gene expression during development and hematopoiesis. The exact regulatory mechanism of HOX gene expression by MLL is poorly understood, but it is believed that MLL functions at the level of chromatin organization. MLL was identified as a common target of chromosomal translocations associated with human acute leukemias. About 50 different MLL fusion partners have been isolated to date, and while similarities exist between groups of partners, there exists no unifying property shared by all the partners. MLL gene rearrangements are found in leukemias with both lymphoid and myeloid phenotypes and are often associated with infant and secondary leukemias. The immature phenotype of the leukemic blasts suggests an important role for MLL in the early stages of hematopoietic development. Mll homozygous mutant mice are embryonic lethal and exhibit deficiencies in yolk sac hematopoiesis. Recently, two different MLL-containing protein complexes have been isolated. These and other gain- and loss-of-function experiments have provided insight into normal MLL function and altered functions of MLL fusion proteins. This article reviews the progress made toward understanding the function of the wild-type MLL protein. While many advances in understanding this multifaceted protein have been made since its discovery, many challenging questions remain to be answered.  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号