首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   43篇
  国内免费   50篇
  2024年   1篇
  2023年   9篇
  2022年   11篇
  2021年   10篇
  2020年   18篇
  2019年   20篇
  2018年   17篇
  2017年   14篇
  2016年   22篇
  2015年   20篇
  2014年   22篇
  2013年   47篇
  2012年   15篇
  2011年   34篇
  2010年   31篇
  2009年   31篇
  2008年   30篇
  2007年   30篇
  2006年   26篇
  2005年   19篇
  2004年   21篇
  2003年   17篇
  2002年   15篇
  2001年   12篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
441.
The cellulosome is an intricate multienzyme complex, designed for efficient degradation of plant cell wall polysaccharides, notably cellulose. The supramolecular cellulosome architecture in different bacteria is the consequence of the types and specificities of the interacting cohesin and dockerin modules, borne by the different cellulosomal subunits. In this study, we describe a microarray system for determining cohesin-dockerin specificity, which allows global comparison among the interactions between various members of these two complementary families of interacting protein modules. Matching recombinant fusion proteins were prepared that contained one of the interacting modules: cohesins were joined to an appropriate cellulose-binding module (CBM) and the dockerins were fused to a thermostable xylanase that served to enhance expression and proper folding. The CBM-fused cohesins were immobilized on cellulose-coated glass slides, to which xylanase-fused dockerin samples were applied. Knowledge of the specificity characteristics of native and mutated members of the cohesin and dockerin families provides insight into the architecture of the parent cellulosome and allows selection of suitable cohesin-dockein pairs for biotechnological and nanotechnological application. Using this approach, extensive cross-species interaction among type-II cohesins and dockerins is shown for the first time. Selective intraspecies binding of an archaeal dockerin to two complementary cohesins is also demonstrated.  相似文献   
442.
纤维素结合域的研究进展   总被引:1,自引:0,他引:1  
纤维资源是生物界最为丰富的有机碳源,有效酶解植物纤维资源对于减缓能源枯竭和食品危机具有重要意义。然而,天然纤维素结构上的复杂多样性为酶的攻击和可及带来巨大困难。为了克服这一问题,自然界中能够利用纤维原料的酶大多由相对独立的两种结构域、催化结构域(CD)、纤维素结合结构域(CBM)组成。其中,CBM有助于酶与不溶性底物的结合,在纤维原料酶解中具有重要作用。CBM所具备的特殊的底物特异性不仅对于提高酶与纤维的可及度,增强纤维素酶解效率,揭示纤维素酶解机制具有重要意义,而且应用在基因工程产品的分离纯化,酶制剂的品质改善及细胞固定化等领域也有很好的发展前景。本文就近年来CBM的研究现状及其发展前景进行了综述。  相似文献   
443.
The aim of synthetic biology is to design artificial biological systems for novel applications. From an engineering perspective, construction of biological systems of defined functionality in a hierarchical way is fundamental to this emerging field. Here, we highlight some current advances on design of several basic building blocks in synthetic biology including the artificial gene control elements, synthetic circuits and their assemblies into devices and modules. Such engineered basic building blocks largely expand the synthetic toolbox and contribute to our understanding of the underlying design principles of living cells.  相似文献   
444.
The macro domain is an ADP-ribose binding module   总被引:10,自引:0,他引:10  
  相似文献   
445.
The Emergence of a Synthetic Theory of Intron Evolution   总被引:8,自引:1,他引:7  
de Souza SJ 《Genetica》2003,118(2-3):117-121
The debate on the origin and evolution of the intron/exon structure of eukaryotic genes has witnessed profound changes in the last 10 years. Concepts from both the introns-early and introns-late theories have merged into a new synthetic theory of intron evolution. Here I review the debate and discuss the perspectives for the future.  相似文献   
446.
447.
The monosporic seven-celled/eight-nucleate Polygonum-type female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonum-type female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of ontogenetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar-like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio.  相似文献   
448.
Actinohivin (AH) is a potent anti-human immunodeficiency virus (HIV) protein that consists of highly conserved three-tandem repeats (segments 1, 2, and 3). The molecular target of AH in its anti-HIV activity is high-mannose-type saccharide chains of HIV gp120. This article deals with sequence requirements for the anti-HIV activity of AH. The deleted or substituted DNAs encoding AH or His-AH were prepared using mutagenic oligonucleotide primers in PCR. The mutant constructs were expressed in Escherichia coli, and the activities of the recombinant protein products were examined by a syncytium-formation assay system that mimics anti-HIV activity. The single segment mutant His-AHs showed no anti-syncytium-formation activity, but the mutant His-AHs, which consists of 2 or 3 segments, retained reduced activities. His-AH(6-114) dramatically reduced the anti-syncytium-formation activity to that of His-AH(36-114) or His-AH(I5A). Furthermore, His-AH(Q33A), His-AH(Q71A), and His-AH(Q109A) in which glutamine residues were substituted into alanine showed reduced activities of 1/20, 1/10, and 1/30, respectively, in anti-syncytium formation compared with His-AH. These results indicate that three segments of AH are necessary for potent anti-syncytium-formation activity—that is, for potent anti-HIV activity and the cooperated involvement of each segment of AH increased the AH-gp120 interaction.  相似文献   
449.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. In this study, the Gly-36, Gly-37, Lys-38, Glu-43, Arg-51, Glu-52, Leu-53, Glu-55, and Glu-56 residues of Orf135, which are conserved in the three MutT-type proteins (Orf135, MutT, and MTH1), were substituted, and the enzymatic activity of these mutant proteins was examined. The mutant proteins with a substitution at the 36th, 37th, 52nd, and 56th amino acid residues completely lost their activity. On the other hand, the mutant proteins with a substitution at the 38th, 43rd, 51st, 53rd, and 55th residues could hydrolyze 5-methyl-dCTP. Some mutants with detectable activity for 5-methyl-dCTP did not hydrolyze dCTP. Activities for known substrates (5-methyl-dCTP, dCTP, 2-hydroxy-dATP, and 8-hydroxy-dGTP) were examined in detail with the four mutants, K38R, E43A, L53A, and E55Q. These results indicate the essential residues for the activity of the Orf135 protein.  相似文献   
450.
Sequence analysis of β-1,3-xylanase (TxyA) from a marine bacterium, Alcaligenes sp. strain XY-234 implied that an xylan-binding module belonging to carbohydrate-binding module family 31 (TxyA-CBM) is separated from a catalytic module belonging to glycosyl hydrolase family 26 (TxyA-CM) by a putative glycine-rich linker [Okazaki, F., et al. (2002) J. Bacteriol. 184: 2399–2403]. In order to reveal the role of these structural features of TxyA, two modules, TxyA-CBM and TxyA-CM, were constructed, and those modules and full-length TxyA were characterized by thermodynamic studies. TxyA-CBM and TxyA-CM showed full reversible folding from denaturant-induced unfolded forms, exhibited higher thermodynamic stabilities. The conformational stability of both truncated modules is industrially desirable, as well as aiding the understanding of the enzymatic characterization of the two modules of β-1,3-xylanase separated by a long linker.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号