首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   43篇
  国内免费   50篇
  2024年   1篇
  2023年   9篇
  2022年   11篇
  2021年   10篇
  2020年   18篇
  2019年   20篇
  2018年   17篇
  2017年   14篇
  2016年   22篇
  2015年   20篇
  2014年   22篇
  2013年   47篇
  2012年   15篇
  2011年   34篇
  2010年   31篇
  2009年   31篇
  2008年   30篇
  2007年   30篇
  2006年   26篇
  2005年   19篇
  2004年   21篇
  2003年   17篇
  2002年   15篇
  2001年   12篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
111.
The starch-synthase III (SSIII), with a total of 1025 residues, is one of the enzymes involved in plants starch synthesis. SSIII from Arabidopsis thaliana contains a putative N-terminal transit peptide followed by a 557-amino acid SSIII-specific domain (SSIII-SD) with three internal repeats and a C-terminal catalytic domain of 450 amino acids. Here, using computational characterization techniques, we show that each of the three internal repeats encodes a starch-binding domain (SBD). Although the SSIII from A. thaliana and its close homologous proteins show no detectable sequence similarity with characterized SBD sequences, the amino acid residues known to be involved in starch binding are well conserved.  相似文献   
112.
We present a chlorophyll fluorometer module system which adapts the intensity to the individual leaf sample by adjusting the quantum flux density of the excitation light so that the fluorescence signal is kept constant. This is achieved by means of a feedback power adjustment of the fluorescence exciting laser diode. Thus, the intensity of the excitation light is adapted to the actual need of a particular sample for quantum conversion without applying exaggeratedly high quantum flux density. We demonstrate the influence of the initial laser power chosen at the onset of irradiation and kept constant during fluorescence rise transient within the first second. Examples are shown for measuring upper and lower leaf sides, a single leaf with different pre-darkening periods, as well as yellow, light green and dark green leaves. The novel excitation kinetics during the induction of chlorophyll fluorescence can be used to study the yield and regulation of photosynthesis and its related non-photochemical processes for an individual leaf. It allows not only to sense the present state of pre-darkening or pre-irradiation but also the light environment the leaf has experienced during its growth and development. Thus, the individual physiological capacity and plasticity of each leaf sample can be sensed being of high importance for basic and applied ecophysiological research which makes this new methodology both innovative and informative.  相似文献   
113.
A xylanase gene, xynAS27, was isolated from a genomic library of Streptomyces sp. S27. The full-length gene consists of 1,434 bp and encodes 477 amino acids, including a putative signal peptide of 41 residues at its N-terminus. The mature xylanase comprises two functional domains, a family 10 glycoside hydrolase, and a family 13 carbohydrate-binding module (CBM), which were joined by a short Gly/Pro-rich linker region. The intact, the CBM-truncated and the CBM-linker-truncated versions of the mature proteins were expressed in Escherichia coli BL21 (DE3), purified to electrophoretic homogeneity and subsequently characterized. XynAS27 showed high pH stability over the pH range 2.2–12.0. XynAS27 may be a compelling tool for the food industry because it generates xylobiose (85% w/w) as the main product of xylan hydrolysis. The truncated versions showed less pH and thermal stability, and less affinity and hydrolytic activity to insoluble substrate than the intact one. These results indicate that the CBM of XynAS27 plays a key role in the hydrolysis of insoluble substrate, and the CBM and linker region are also important for the enzyme stability, and the linker region contributes more.  相似文献   
114.
115.
The broad host-range IncQ-2 family plasmid, pTF-FC2, is a mobilizable, medium copy number plasmid that lacks an active partitioning system. Plasmid stability is enhanced by a toxin–antitoxin (TA) system known as pas (plasmid addiction system) that is located within the replicon between the repB (primase) and the repA (helicase) and repC (DNA-binding) genes. The discovery of a closely related IncQ-2 plasmid, pRAS3, with a completely different TA system located between the repB and repAC genes raised the question of whether the location of pas within the replicon had an effect on the plasmid in addition to its ability to act as a TA system. In this work we demonstrate that the presence of the strongly expressed, autoregulated pas operon within the replicon resulted in an increase in the expression of the downstream repAC genes when autoregulation was relieved. While deletion of the pas module did not affect the average plasmid copy number, a pas-containing plasmid exhibited increased stability compared with a pas deletion plasmid even when the TA system was neutralized. It is proposed that the location of a strongly expressed, autoregulated operon within the replicon results in a rapid, but transient, expression of the repAC genes that enables the plasmid to rapidly restore its normal copy number should it fall below a threshold.  相似文献   
116.
采用大样本随机挖取单个无性系的调查和测定方法,分析了松嫩平原碱化草甸朝鲜碱茅无性系冬眠构件的结构及其生长规律。结果表明,在生长季末期,朝鲜碱茅无性系冬眠构件是由冬眠苗和冬眠芽组成,其中,冬眠苗平均为72.27个±48.29个,冬眠芽为45.87个±26.27个。朝鲜碱茅无性系冬眠构件各组分具有相同的形成规律。冬眠苗数、冬眠芽数、冬眠构件总数均随着丛径、丛面积和亲株数量的增加呈幂函数异速生长。  相似文献   
117.
Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5′ upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TRα1, TRβ1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TRα1, TRβ1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.  相似文献   
118.
The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical  81-Å-long and  60-Å-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking “non-self” carbohydrate ligands and “self” carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.  相似文献   
119.
120.
In the present work, a rotating disk filter was designed for mammalian cell separation with the aim of avoiding both cell damage and membrane fouling. Different geometric and operational variables of the rotating disk filter were studied using computational fluid dynamics (CFD) by varying rotor radius, rotor angle, membrane-rotor distance, and angular velocity. The combinations of these variables followed a statistical design, so that an analysis of the CFD results provided correlations describing the average shear stress on the membrane surface and the maximum shear stress in the whole module as a function of the variables studied. Based on these correlations, and on the shear resistance levels of Chinese hamster ovary (CHO) and baby hamster kidney (BHK) cell lines, which were investigated using a cone-and-plate viscosimeter, it was possible to determine the geometry and angular velocity that would minimize both cell damage and membrane fouling. After construction, the filter was tested in filtration experiments at increasing permeate fluxes. Cell viability remained >90% for the duration of the experiments (2.5 h), and no indication of fouling was observed. It was shown that the designed dynamic filter is able to effectively avoid both cell damage and membrane fouling, and thus can be used for mammalian cell harvesting and perfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号