首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14511篇
  免费   1065篇
  国内免费   469篇
  2023年   149篇
  2022年   216篇
  2021年   321篇
  2020年   320篇
  2019年   367篇
  2018年   498篇
  2017年   361篇
  2016年   327篇
  2015年   429篇
  2014年   647篇
  2013年   888篇
  2012年   540篇
  2011年   603篇
  2010年   564篇
  2009年   619篇
  2008年   770篇
  2007年   726篇
  2006年   752篇
  2005年   642篇
  2004年   592篇
  2003年   544篇
  2002年   499篇
  2001年   365篇
  2000年   353篇
  1999年   369篇
  1998年   342篇
  1997年   288篇
  1996年   257篇
  1995年   265篇
  1994年   249篇
  1993年   270篇
  1992年   215篇
  1991年   202篇
  1990年   194篇
  1989年   158篇
  1988年   151篇
  1987年   125篇
  1986年   96篇
  1985年   102篇
  1984年   146篇
  1983年   86篇
  1982年   87篇
  1981年   84篇
  1980年   73篇
  1979年   55篇
  1978年   44篇
  1977年   27篇
  1976年   24篇
  1975年   12篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
992.
The ferredoxin from the thermophilic archaeon Acidianus ambivalens is a small monomeric seven-iron protein with a thermal midpoint (T(m)) of 122 degrees C (pH 7). To gain insight into the basis of its thermostability, we have characterized unfolding reactions induced chemically and thermally at various pHs. Thermal unfolding of this ferredoxin, in the presence of various guanidine hydrochloride (GuHCl) concentrations, yields a linear correlation between unfolding enthalpies (DeltaH[T(m)]) and T(m) from which an upper limit for the heat capacity of unfolding (DeltaC(P)) was determined to be 3.15 +/- 0.1 kJ/(mole * K). Only by the use of the stronger denaturant guanidine thiocyanate (GuSCN) is unfolding of A. ambivalens ferredoxin at pH 7 (20 degrees C) observed ([GuSCN](1/2) = 3.1 M; DeltaG(U)[H(2)O] = 79 +/- 8 kJ/mole). The protein is, however, less stable at low pH: At pH 2.5, T(m) is 64 +/- 1 degrees C, and GuHCl-induced unfolding shows a midpoint at 2.3 M (DeltaG(U)[H(2)O] = 20 +/- 1 kJ/mole). These results support that electrostatic interactions contribute significantly to the stability. Analysis of the three-dimensional molecular model of the protein shows that there are several possible ion pairs on the surface. In addition, ferredoxin incorporates two iron-sulfur clusters and a zinc ion that all coordinate deprotonated side chains. The zinc remains bound in the unfolded state whereas the iron-sulfur clusters transiently form linear three-iron species (in pH range 2.5 to 10), which are associated with the unfolded polypeptide, before their complete degradation.  相似文献   
993.
We studied population polymorphism at a major histocompatibility complex (MHC) class II beta gene in the deer mouse (Peromyscus maniculatus). We found that: (i) a single population of P. maniculatus has significantly higher levels of DNA and protein sequence diversity than worldwide samples from homologous genes in other taxa, including humans and mice; and (ii) the genealogy of allelic sequences in P. maniculatus deviates significantly from theoretical expectation under a model of symmetric balancing selection, in that alleles are relatively more divergent than expected. We suggest that the observation of high levels of pairwise allelic sequence divergence and deviation of the genealogy from theoretical expectation in P. maniculatus together provide support for a divergent allele advantage model for the maintenance of MHC polymorphism.  相似文献   
994.
The nature of the dynamical coupling between a protein and its surrounding solvent is an important, yet open issue. Here we used temperature-dependent protein crystallography to study structural alterations that arise in the enzyme acetylcholinesterase upon X-ray irradiation at two temperatures: below and above the glass transition of the crystal solvent. A buried disulfide bond, a buried cysteine, and solvent exposed methionine residues show drastically increased radiation damage at 155 K, in comparison to 100 K. Additionally, the irradiation-induced unit cell volume increase is linear at 100 K, but not at 155 K, which is attributed to the increased solvent mobility at 155 K. Most importantly, we observed conformational changes in the catalytic triad at the active site at 155 K but not at 100 K. These changes lead to an inactive catalytic triad conformation and represent, therefore, the observation of radiation-inactivation of an enzyme at the atomic level. Our results show that at 155 K, the protein has acquired--at least locally--sufficient conformational flexibility to adapt to irradiation-induced alterations in the conformational energy landscape. The increased protein flexibility may be a direct consequence of the solvent glass transition, which expresses as dynamical changes in the enzyme's environment. Our results reveal the importance of protein and solvent dynamics in specific radiation damage to biological macromolecules, which in turn can serve as a tool to study protein flexibility and its relation to changes in a protein's environment.  相似文献   
995.
More than 30 organisms have been sequenced entirely. Here, we applied a variety of simple bioinformatics tools to analyze 29 proteomes for representatives from all three kingdoms: eukaryotes, prokaryotes, and archaebacteria. We confirmed that eukaryotes have relatively more long proteins than prokaryotes and archaes, and that the overall amino acid composition is similar among the three. We predicted that approximately 15%-30% of all proteins contained transmembrane helices. We could not find a correlation between the content of membrane proteins and the complexity of the organism. In particular, we did not find significantly higher percentages of helical membrane proteins in eukaryotes than in prokaryotes or archae. However, we found more proteins with seven transmembrane helices in eukaryotes and more with six and 12 transmembrane helices in prokaryotes. We found twice as many coiled-coil proteins in eukaryotes (10%) as in prokaryotes and archaes (4%-5%), and we predicted approximately 15%-25% of all proteins to be secreted by most eukaryotes and prokaryotes. Every tenth protein had no known homolog in current databases, and 30%-40% of the proteins fell into structural families with >100 members. A classification by cellular function verified that eukaryotes have a higher proportion of proteins for communication with the environment. Finally, we found at least one homolog of experimentally known structure for approximately 20%-45% of all proteins; the regions with structural homology covered 20%-30% of all residues. These numbers may or may not suggest that there are 1200-2600 folds in the universe of protein structures. All predictions are available at http://cubic.bioc.columbia.edu/genomes.  相似文献   
996.
The intragastric alcohol infusion rat model (IAIRM) of alcoholic liver disease (ALD) has been utilized in various laboratories to study various aspects of ALD pathogenesis including oxidative stress, cytokine upregulation, hypoxic damage, apoptosis, ubiquitin-proteasome pathway and CYP2E1 induction. The basic value of the model is that it produces pathologic changes which resemble ALD including microvesicular and macrovesicular fat, megamitochondria, apoptosis, central lobular and pericellular fibrosis, portal fibrosis, bridging fibrosis, central necrosis, and mixed inflammatory infiltrate including PMNs and lymphocytes. The model is valuable because the diet and ethanol intake are totally under the control of the investigator. A steady state can be maintained with high or low blood alcohol levels for long periods. The cycling of the blood alcohol levels, when a constant infusion rate of alcohol is maintained, simulates binge drinking. Using this model the importance of dietary fat, especially the degree of saturation of the fatty acids on the induction of liver pathology, has been documented. The role of endotoxin, the Kupffer cell, TNFalpha, and NADPH oxidase have been demonstrated. The importance of 2E1 in oxidative stress induction has been shown using inhibitors of the isozyme. The importance of dietary iron in the pathogenesis of cirrhosis has been documented. Acetaldehyde has been shown to play a role in preventing liver pathology by preventing NFkappaB activation. Using the model, to maintain high blood alcohol levels is found to be necessary to demonstrate proteasomal peptidase inhibition. Ubiquitin synthesis is also inhibited at high blood alcohol levels in the IAIRM model. Oxidized proteins accumulate in the liver at high blood alcohol levels. Neoantigens derived from protein adducts formed with products of oxidation induce autoimmune mechanisms of liver injury. Thus, in many ways the model has revolutionized our understanding of the pathogenesis of ALD.  相似文献   
997.
Bacteriophage lambda has been in use as a cloning vector for over 25 years, and has been used extensively as an expression vector. The efficiency of packaging and infection, and the simplicity of plaque screening are advantages of lambda as a cloning vector. A number of ingenious modifications help overcome the disadvantages associated with its mode of growth and its size. Some lambda vectors have been designed to be readily converted into plasmids or phagemids, and there are a variety of promoters and fusions that can be used to drive expression of foreign genes. Screening lambda libraries with antibodies or ligands is a powerful way of identifying novel genes.  相似文献   
998.
Resonances in the two-dimensional 1H NMR spectra of a weak toxin (WTX) from the venom of cobra Naja kaouthiafor all 65 amino acid residues were assigned. The amino acid sequence of WTX, determined by the sequential assignment of spin systems, was found to be similar to that of the CM-9a toxin from the N. kaouthiavenom. Unlike CM-9a, WTX contains an additional Trp36 residue; Lys50 and Tyr52 are interchanged; and there is a Thr residue in place of Arg2. For some residues of WTX, the presence of two components of approximately equal intensities in the spectra was shown, which is explained by the conformational heterogeneity of the polypeptide owing to the cistransisomerization of the peptide bond Arg32–Pro33. The data (contacts of the nuclear Overhauser effect, constants of spin–spin coupling of protons, and rates of exchange of amide protons for deuterium of the solvent) made it possible to determine the secondary structure of two forms of WTX, which is characterized by the presence of two antiparallel -sheets, one of which consists of two strands (regions 1–5 and 13–17) and the other, of three strands (regions 23–28, 38–43, and 55–59).  相似文献   
999.
Caldesmon and smooth-muscle regulation   总被引:5,自引:0,他引:5  
Smooth muscles exist in the wall of hollow organs in our body and are responsible for controlling the flow of vital fluids that are essential for the normal function of the cardiovascular, respiratory, digestive, and reproductive systems. Many diseases, such as hypertension, asthma, indigestion, and premature birth, may attribute to malfunction of smooth-muscle contraction. It is therefore important to decipher how smooth-muscle contraction is regulated. This review attempts to give a brief overview of current understanding about the molecular mechanisms of smooth-muscle regulation and, in particular, to discuss possible roles of caldesmon in this regulatory process.  相似文献   
1000.
Very little is known about the cellular mechanisms controlling renal tubular amino acid transport. cAMP-dependent protein kinase (cAK) modulates the activity of several ion channels and pumps in biological membranes. The direct influence of cAK on transmembrane amino acid transport has not been investigated. We studied the effect the cAK-mediated phosphorylation on Na+- and Cl–-linked proline transport across the rat renal brush border membrane (BBM). cAK bioassay and Western hybridization analysis using cAK subunit-specific antibodies demonstrated the presence of the enzyme in the BBM. Brush border membrane vesicles (BBMV) were phosphorylated using the hyposmotic shock technique. cAMP, by activating endogenous cAK,and exogenous, highly purified catalytic subunit of cAK inhibited NaCl-dependent proline transport by phosphorylated, lysed/resealed BBMV compared with control vesicles. The cAK-mediated inhibition of proline uptake was completely abolished when phosphorylation at the cytoplasmic (inner side) of the membrane was prevented by isosmotic, rather than hyposmotic, phosphorylation. The cAK-induced inhibition of proline transport was reversed by the specific cAK inhibitor peptide, PKl. These data suggest that cAMP-dependent protein kinase-mediated phosphorylation modulates Na+- and Cl–-linked proline transport across the tubular luminal membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号