首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   3篇
  2023年   1篇
  2019年   1篇
  2018年   5篇
  2015年   1篇
  2014年   7篇
  2013年   9篇
  2012年   1篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有95条查询结果,搜索用时 0 毫秒
71.
Light-induced changes in the membrane lipid compositions were studied in pea leaves and in protoplasts and a plasmamembrane-enriched fraction (PMEF)* of pea leaves. PC, PE, PI, PG, PA, MGDG, DGDG and SL were identified as the glycerolipids. The relative levels of various membrane lipids changed due to light-induced greening. There was an increase in the galactolipids of leaves and leaf protoplasts. The galactolipid constituent of the PMEF was very low and showed no change. Among the plasmamembrane phospholipids, PI increased with a concomitant decrease in PC.  相似文献   
72.
Total lipid extracts from potato tubers and tobacco leaves are separated into lipid classes by two step HPLC using a silicic column. Elution is first performed for 20 min with a programmed linear gradient of two mixed solvents running from 100% of solution A (isopropanol-hexane, 4:3) to 100% of solution B (isopropanol-hexane-water, 8:6:1.5); the column is then eluted with pure solution B in an isocratic mode for 20 min more. The main polar lipids (MGDG, DGDG, PC, PE, PG) from both plant tissues can be collected and further separated into component molecular species on a simplified HPLC system with a C18 column eluted in an isocratic mode with a polar solvent. Molecular species separations are achieved within 35 min; quantifications are made through GLC analysis of attached fatty acids. Three to five main molecular species are thus clearly identified in each lipid class. In potato tuber, phospholipids (PC, PE) 18:2/18:2 species are predominant. In tobacco leaf, six double bond species (18:3/18:3 and 16:3/18:3) are predominant in galactolipids, whereas PC contains a greater number of molecular species varying by their degree of unsaturation (from 18:3/18:3 to 16:0/18:2). Only certain molecular species of PG contain Δ3-trans-hexadecenoic acid.  相似文献   
73.
Batch cultures (8–32 l.) of Chlorella vulgaris and Scenedesmus obliquus and of Anacystis nidulans and Microcystis aeruginosa were grown in media containing 0.001 % KNO3 and at several stages in growth sampled for biomass, total protein, chlorophylls, lipids and fatty acids. With increasing time and decreasing nitrogen concentrations, the biomass of all of the algae increased, whereas the total protein and chlorophyll content dropped. Green and blue-green algae, however, behaved differently in their lipid metabolism. In the green algae the total lipid and fatty acid content as well as the composition of these compounds changed considerably during one growth phase and was dependent on the nitrogen concentration in the media at any given day of growth. More specifically, during the initial stages of growth the green algae produced larger amounts of polar lipids and polyunsaturated C16 and C18 fatty acids. Towards the end of growth, however, these patterns changed in that the main lipids of the green algae were neutral with mainly saturated fatty acids (mostly 18:1 and 16:0). Such changes did not occur in the blue-green algae. These differences between prokaryotic and eukaryotic algae can possibly be explained by the ‘endosymbiont theory’.  相似文献   
74.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   
75.
The behavior of the two major galactolipids of wheat endosperm, mono- (MGDG) and di-galactosyldiacylglycerol (DGDG) was studied in aqueous dispersion and at the air/liquid interface. The acyl chains of the pure galactolipids and their binary equimolar mixture are in the fluid or liquid expanded phase. SAXS measurements on liquid-crystalline mesophases associated with the electron density reconstructions show that the DGDG adopts a lamellar phase Lα with parallel orientation of the headgroups with respect to the plane of the bilayer, whereas MGDG forms an inverse hexagonal phase HII with a specific organization of galactosyl headgroups. The equimolar mixture shows a different behavior from those previously described with formation of an Im3m cubic phase. In comparing monolayers composed of the pure galactolipids and their equimolar mixtures, PM-IRRAS spectra show significant differences in the optical properties and orientation of galactosyl groups with respect to the interface. Furthermore, Raman and FTIR spectroscopies show that the acyl chains of the galactolipid mixture are more ordered compared to those of the pure components. These results suggest strong interactions between MGDG and DGDG galactosyl headgroups and these specific physical properties of galactolipids are discussed in relation to their biological interest in wheat seed.  相似文献   
76.
Potato tubers (Solanum tuberosum L. cv Bintje) were stored at 20 °C for 210 days without desprouting to study the lipoxygenase pathway during aging. After 15 days of storage, potato tubers sprouted, while after 45–60 days, apical dominance was lost and multiple sprouts developed. Analysis of the fatty acid hydroperoxides (HPOs) revealed that 9-S-hydroperoxide of linoleic acid (9-HPOD) was the main oxylipin formed. Between 45 and 60 days of storage, increases in the levels of 9-HPOD and colneleic acid were observed. Analysis of phospholipids and galactolipids by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that a decrease in the levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), digalactosyldiacylglycerol (DGDG), and monogalactosyldiacylglycerol (MGDG) occurred between 0 and 45 days of aging. The decrease in the amount of linoleic acid in complex lipids correlates well with the amount of 9-HPOD and colneleic acid produced.  相似文献   
77.
The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration.  相似文献   
78.
The hydroperoxide-induced net release of Ca2+ from rat liver mitochondria is stimulated by the Ca2+ uptake inhibitor ruthenium red. At moderate Ca2+ loads the release takes place with preservation of a high mitochondrial membrane potential. During and after Ca2+ release mitochondria remain intact. The hydroperoxide-induced release of Ca2+ might therefore be a physiological relevance.  相似文献   
79.
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono‐ and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl‐MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl‐MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12‐oxo‐phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA‐containing galactolipids in the plant kingdom. While acyl‐MGDG was found to be ubiquitous in green tissue of plants ranging from non‐vascular plants to angiosperms, OPDA‐containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non‐oxidized and OPDA‐containing acyl‐MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl‐MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.  相似文献   
80.
Raphidophyte algae (Raphidophyceae) can be divided according to pigment composition and plastid ancestry into two categories, brown‐ and green‐pigmented taxa. We sought to examine if there are any biochemical differences in plastid lipid composition between the two groups. To this end, the composition and positional distribution of fatty acids of the chloroplast lipids, mono‐ and digalactosyldiacylglycerol (MGDG and DGDG, respectively), were examined using positive‐ion electrospray/mass spectrometry (ESI/MS) and electrospray/mass spectrometry/mass spectrometry (ESI/MS/MS). Brown‐pigmented strains from the genera Chattonella, Fibrocapsa, and Heterosigma primarily consisted of 20:5/18:4 (sn‐1/sn‐2) MGDG and 20:5/18:4 DGDG, while isolates of the green‐pigmented raphidophyte Gonyostomum semen (Ehrenb.) Diesing contained these as well as 18:3/18:4 MGDG and DGDG, thus underscoring its green algal plastid lineage. Although previously unseen without the regiochemical information provided by ESI/MS/MS, Chattonella subsalsa Biecheler possessed 20:5/18:3 DGDG as a major form, a potential biosynthetic intermediate in the production of 20:5/18:4 DGDG. These results provide a modern interpretation of the fatty acid regiochemistry of MGDG and DGDG.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号