首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   3篇
  2023年   1篇
  2019年   1篇
  2018年   5篇
  2015年   1篇
  2014年   7篇
  2013年   9篇
  2012年   1篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有95条查询结果,搜索用时 31 毫秒
51.
COR15A and COR15B form a tandem repeat of highly homologous genes in Arabidopsis thaliana. Both genes are highly cold induced and the encoded proteins belong to the Pfam LEA_4 group (group 3) of the late embryogenesis abundant (LEA) proteins. Both proteins were predicted to be intrinsically disordered in solution. Only COR15A has previously been characterized and it was shown to be localized in the soluble stroma fraction of chloroplasts. Ectopic expression of COR15A in Arabidopsis resulted in increased freezing tolerance of both chloroplasts after freezing and thawing of intact leaves and of isolated protoplasts frozen and thawed in vitro. In the present study we have generated recombinant mature COR15A and COR15B for a comparative study of their structure and possible function as membrane protectants. CD spectroscopy showed that both proteins are predominantly unstructured in solution and mainly α-helical after drying. Both proteins showed similar effects on the thermotropic phase behavior of dry liposomes. A decrease in the gel to liquid-crystalline phase transition temperature depended on both the unsaturation of the fatty acyl chains and lipid headgroup structure. FTIR spectroscopy indicated no strong interactions between the proteins and the lipid phosphate and carbonyl groups, but significant interactions with the galactose headgroup of the chloroplast lipid monogalactosyldiacylglycerol. These findings were rationalized by modeling the secondary structure of COR15A and COR15B. Helical wheel projection indicated the presence of amphipathic α-helices in both proteins. The helices lacked a clear separation of positive and negative charges on the hydrophilic face, but contained several hydroxylated amino acids.  相似文献   
52.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   
53.
Lipoxygenases (LOXs) are key enzymes in the biosynthesis of oxylipins, the diverse class of bioregulators involved into developmental processes, signalling and defence. This work was undertaken to better understand how LOXs control production of hydroperoxides with different positional and stereochemistry. A number of glycerolipids were tested as substrates for maize 9-LOX (ZmLOX) and its A562G mutant form. Both the wild type (WT) ZmLOX and A562G mutant were shown to dioxygenate monolinolenoylglycerol (MLG) and 2-linoleoyl-sn-glycero-3-phosphorylcholine (lysoPC). Both the WT ZmLOX and A562G mutant form oxidized the MLG predominantly into (9S)-hydroperoxide. The A562G mutation did not affect the relative yield of 13-hydroperoxide, but increased the proportion of (13R)-enantiomer. LysoPC was a poor substrate for both wild type and A562G mutant form of ZmLOX. The oxidation of lysoPC exhibited the limited regio- and stereospecificity. Nevertheless, the WT ZmLOX produced some predominance of (13S)-hydroperoxide. In contrast, the A562G mutant produced some excess of (9S)-hydroperoxide of lysoPC. The bulky polar heads of glycerolipids like MLG and lysoPC cannot penetrate into the LOX active site. Thus, the obtained data indicate that both (9S)- and (13S)-hydroperoxides can be produced when substrate is arranged within LOX active site in the “methyl end first” orientation.  相似文献   
54.
Although there is much knowledge of the enzymology (and genes coding the proteins) of lipid biosynthesis in higher plants, relatively little attention has been paid to regulation. We have demonstrated the important role for cholinephosphate cytidylyltransferase in the biosynthesis of the major extra-plastidic membrane lipid, phosphatidylcholine. We followed this work by applying control analysis to light-induced fatty acid synthesis. This was the first such application to lipid synthesis in any organism. The data showed that acetyl-CoA carboxylase was very important, exerting about half of the total control. We then applied metabolic control analysis to lipid accumulation in important oil crops — oilpalm, olive, and rapeseed. Recent data with soybean show that the block of fatty acid biosynthesis reactions exerts somewhat more control (63%) than lipid assembly although both are clearly very important. These results suggest that gene stacks, targeting both parts of the overall lipid synthesis pathway will be needed to increase significantly oil yields in soybean. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   
55.
We characterized certain physiological functions of cyanobacterial monoglucosyldiacylglycerol using a Synechocystis sp. PCC 6803 mutant in which the gene for monoglucosyldiacylglycerol synthase had been disrupted and its function complemented by inclusion of an Arabidopsis monogalactosyldiacylglycerol synthase gene. By using this method, we prepared the first viable monoglucosyldiacylglycerol-deficient mutant of cyanobacterium and found that monoglucosyldiacylglycerol is not essential for its growth and photosynthesis under a set of “normal growth conditions” when monogalactosyldiacylglycerol is adequately supplied by the Arabidopsis monogalactosyldiacylglycerol synthase. The mutant had healthy thylakoid membranes and normal pigment content. The membrane lipid composition of the mutant was similar with that of WT except lack of monoglucosyldiacylglycerol and a slight increase in the level of phosphatidylglycerol at both normal and low temperatures. However, the ratio of unsaturated fatty acids in monogalactosyldiacylglycerol and digalactosyldiacylglycerol was reduced in the mutant compared with WT. Although the growth of the mutant was indistinguishable with that of WT at normal growth temperature, it was markedly retarded at low temperature compared with that of WT. Our data indicated the possibility that cyanobacterial monogalactosyldiacylglycerol-synthesis pathway might be required for the adequate unsaturation level of fatty acids in galactolipids and affect the low-temperature sensitivity.  相似文献   
56.
After 2, 10 and 24 hr labelling with [1-14C] acetate, radioactivity incorporated into the lipids of cotton leaves is mainly found in phosphatidylcholine, phosphatidylglycerol and neutral lipids. Galactolipids are slowly synthesized and after 24 hr, account for only 10% of the total radioactivity. Under water stress, a marked decrease of precursor incorporation into leaf lipids occurs, particularly in phosphatidylcholine and galactolipids. Relative incorporation into neutral lipids, on the contrary, increases. Water deficits provoke an inhibition of the fatty acid desaturation, resulting in a sharp decrease of linoleic and linolenic acid biosynthesis. The decrease in unsaturated fatty acid biosynthesis occurs in all lipid classes, but is most pronounced in the galactolipid fractions. In the drought-resistant cotton variety (Mocosinho), the variations in lipid and fatty acid metabolism under water stress are less pronounced than in the drought-sensitive variety (Reba), and this attests a greater stability of the membrane system.  相似文献   
57.
Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820 nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5 min) mild (40 °C) or strong (44 °C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress.  相似文献   
58.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   
59.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively) constitute the bulk of membrane lipids in plant chloroplasts. Mutant analyses in Arabidopsis have shown that these galactolipids are essential for chloroplast biogenesis and photoautotrophic growth. Moreover, these non-phosphorous lipids are proposed to participate in low-phosphate (Pi) adaptations. Under Pi-limited conditions, a drastic accumulation of DGDG occurs concomitantly with a large reduction in membrane phospholipids, suggesting that plants substitute DGDG for phospholipids during Pi starvation. Previously, we reported that among the three MGDG synthase genes ( MGD1 , MGD2 and MGD3 ), the type-B MGD2 and MGD3 are upregulated in parallel with DGDG synthase genes during Pi starvation. Here, we describe the identification and characterization of T-DNA insertional mutants of Arabidopsis type-B MGD genes. Under Pi-starved conditions, the mgd3-1 mutant showed a drastic reduction in DGDG accumulation, particularly in the root, indicating that MGD3 is the main isoform responsible for DGDG biosynthesis in Pi-starved roots. Moreover, in the roots of mgd2 mgd3 plants, Pi stress-induced accumulation of DGDG was almost fully abolished, showing that type-B MGD enzymes are essential for membrane lipid remodeling in Pi-starved roots. Reductions in fresh weight, root growth and photosynthetic performance were also observed in these mutants under Pi-starved conditions. These results demonstrate that Pi stress-induced membrane lipid remodeling is important in plant growth during Pi starvation. The widespread distribution of type-B MGD genes in land plants suggests that membrane lipid remodeling mediated by type-B MGD enzymes is a potent adaptation to Pi deficiency for land plants.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号