首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4114篇
  免费   142篇
  国内免费   79篇
  4335篇
  2024年   9篇
  2023年   64篇
  2022年   101篇
  2021年   114篇
  2020年   154篇
  2019年   281篇
  2018年   229篇
  2017年   192篇
  2016年   157篇
  2015年   75篇
  2014年   233篇
  2013年   434篇
  2012年   100篇
  2011年   204篇
  2010年   107篇
  2009年   117篇
  2008年   144篇
  2007年   168篇
  2006年   122篇
  2005年   139篇
  2004年   112篇
  2003年   105篇
  2002年   87篇
  2001年   64篇
  2000年   46篇
  1999年   56篇
  1998年   66篇
  1997年   54篇
  1996年   42篇
  1995年   60篇
  1994年   36篇
  1993年   46篇
  1992年   45篇
  1991年   27篇
  1990年   23篇
  1989年   28篇
  1988年   23篇
  1987年   19篇
  1986年   28篇
  1985年   29篇
  1984年   39篇
  1983年   17篇
  1982年   23篇
  1981年   23篇
  1980年   35篇
  1979年   13篇
  1978年   7篇
  1977年   7篇
  1974年   6篇
  1973年   13篇
排序方式: 共有4335条查询结果,搜索用时 0 毫秒
41.
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients.  相似文献   
42.
Monosaccharides, disaccharides, and trisaccharides were tested as inhibitors of the in vitro growth of Plasmodium falciparum (strain FCB). While certain monosaccharides (N-acetyl-D-glucosamine, D-mannose, and 3-O-methyl-D-glucose) proved to exhibit a toxic or reversibly retarding effect on the intraerythrocytic development of the parasite, the corresponding alpha- or beta-methylglycosides did not. Several methylglycosides, synthetic di- and tri-saccharides, and artificial blood group antigens were further tested for inhibitory effects on invasion of host red blood cells in vitro. The synthetic disaccharides beta DGlcNAc(1----4) alpha DManOMe and beta DGlcNAc(1----4) DGlcNAc (chitobiose) were good inhibitors of invasion at 10 mM concentration, whereas beta DGal(1----4)beta DGlcNAcOMe was negligibly inhibitory. The inhibition rate of N-acetyl-D-glucosamine, beta-glycosidically linked to bovine serum albumin (BSA) by an alipathic spacer, -(CH2)8CO-, was not enhanced, compared to the corresponding hapten, beta DGlcNAcO(CH2)8COOCH3. The inhibition rates of blood group A- and B-trisaccharide haptens, which were inhibitors of invasion, were also not significantly enhanced when coupled to BSA by way of the corresponding amide spacer, -(CH2)2NHCO(CH2)7CO-. A remarkable enhancement of the inhibition rate was, however, observed when beta DGal(1----3) alpha DGalNAcO(CH2)2NHCO(CH2)7COOCH3 (T-hapten) was coupled to BSA. A clear-cut decrease in the inhibition rates of different beta-glycosides of N-acetyl-D-glucosamine, beta DGlcNAcOR, was observed, depending on the nature of the aglycon R(p-nitrophenyl greater than -(CH2)8COOCH3 greater than -(CH2)2NHCO(CH2)2COOCH3 greater than -CH3). Also, p-nitrophenyl-alpha-D-glucopyranoside was a much better inhibitor of invasion than the corresponding methyl glycoside, alpha DGlcOMe, which was not inhibitory. The properties of the aglycon spacer, used for the covalent attachment of the carbohydrate to the carrier protein, may thus be crucial for the outcome of the inhibition rate.  相似文献   
43.
New ternary transition metal complexes of formulations [Ni(bpa)(p-AB)Cl]n · 3nH2O (bpa = 2,2′-bipyridylamine, p-AB = aminobenzenecarboxylic acid) (1), [Cu(bpa)(p-AB)Cl] · H2O (2), [Zn(bpa)(p-AB)2] · H2O (3) are prepared, their structural features are characterized by crystal structural studies, and their DNA binding propensity has been evaluated by fluorescence and viscosity method. In complex 2 and 3, both bpa and p-AB act as the bidentate N and O-donor ligand, respectively. While in complex 1, p-AB acts as a rare tridentate ligand. In the packing pattern of each complex, π-π interaction in their solid state is also described. The complexes show the competitive inhibition of ethidium binding to DNA, and the DNA binding propensity can be reflected as the relative order: 1 > 2 > 3.  相似文献   
44.
The protein and gene sequences of the cowpea Bowman-Birk type trypsin inhibitor which confers enhanced insect resistance to transgenic tobacco plants, and of cowpea trypsin/chymotrypsin inhibitors are presented. There are regions of high conservation and high divergence within the 5 leader, mature protein and 3 non-coding regions of the Bowman-Birk inhibitors and in the genes which encode them in different members of this family within the Leguminosae. The practical implications of this finding for studies on the evolution of plants and the utilization of these genes for enhancing insect resistance is discussed.  相似文献   
45.
Wallace HM  Fraser AV 《Amino acids》2004,26(4):353-365
Summary. The identification of increased polyamine concentrations in a variety of diseases from cancer and psoriasis to parasitic infections has led to the hypothesis that manipulation of polyamine metabolism is a realistic target for therapeutic or preventative intervention in the treatment of certain diseases.The early development of polyamine biosynthetic single enzyme inhibitors such as -difluoromethylornithine (DFMO) and methylglyoxal bis(guanylhydrazone) showed some interesting early promise as anticancer drugs, but ultimately failed in vivo. Despite this, DFMO is currently in use as an effective anti-parasitic agent and has recently also been shown to have further potential as a chemopreventative agent in colorectal cancer.The initial promise in vitro led to the development and testing of other potential inhibitors of the pathway namely the polyamine analogues. The analogues have met with greater success than the single enzyme inhibitors possibly due to their multiple targets. These include down regulation of polyamine biosynthesis through inhibition of ornithine decarboxylase and S-adenosylmethionine decarboxylase and decreased polyamine uptake. This coupled with increased activity of the catabolic enzymes, polyamine oxidase and spermidine/spermine N1-acetyltransferase, and increased polyamine export has made the analogues more effective in depleting polyamine pools. Recently, the identification of a new oxidase (PAO-h1/SMO) in polyamine catabolism and evidence of induction of both PAO and PAO-h1/SMO in response to polyamine analogue treatment, suggests the analogues may become an important part of future chemotherapeutic and/or chemopreventative regimens.  相似文献   
46.
47.
Through a still unclear mechanism, pemphigus vulgaris autoantibodies (PV-IgG) induce intra-epidermal acantholytic lesions responsible for severe to fatal skin wounding. We present evidence that PV lesions contain apoptotic keratinocytes, and that cell death is induced in the lesional tissue apparently before cell separation. These data suggest that apoptosis could be the cause of the acantholytic phenomenon. We show that PV-IgG and an antibody against Fas receptor (anti-FasR) induce lesions in vitro in a similar way, causing: (1) secretion of soluble FasL; (2) elevated cellular amounts of FasR, FasL (soluble and membranal), Bax and p53 proteins; (3) reduction in levels of cellular Bcl-2; (4) enrichment in caspase 8, and activation of caspases 1 and 3; (5) co-aggregation of FasL and FasR with caspase 8 in membranal death-inducing signaling complex (DISC). Hence, the Fas-mediated death signaling pathway seems to be involved in lesion formation. Moreover, we have shown that in skin organ cultures and in keratinocyte cultures, PV-IgG can induce caspase activation and DNA fragmentation, and caspase inhibitors can prevent the formation of PV-IgG-induced epidermal lesions. Altogether, these results suggest that PV-IgG-induced acantholysis may proceed through the death-signaling pathway. They highlight new perspectives on mechanisms of tissue damage in autoimmune diseases.  相似文献   
48.
BACKGROUND : Selective serotonin reuptake inhibitors (SSRIs) have been suspected of cardiac teratogenicity, but reports have been inconsistent. Our aim was to investigate the rate of nonsyndromic congenital heart defects in newborns exposed in utero to SSRIs compared with unexposed controls. METHODS : This prospective study of women who gave birth at our tertiary center from 2000 to 2007 yielded 235 women who reported first‐trimester SSRI use during pregnancy. All newborns born during the study period and found to have a persistent cardiac murmur on day 2 or 3 of life were referred for examination by a pediatric cardiologist and by echocardiography. The findings were compared between the newborns who were exposed to SSRIs and those who were not. RESULTS : Nonsyndromic congenital heart defects were identified by echocardiography in 8 of 235 (3.40%) newborns exposed in utero to SSRIs and in 1083 of 67,636 (1.60%) non‐exposed newborns. The difference in prevalence between the two groups was significant (relative risk, 2.17; 95% confidence interval, 1.07–4.39). The prevalence rates for paroxetine and fluoxetine exposure were 4.3% and 3.0%, respectively. All cardiac defects in the study group were mild: ventricular septal defect (6), bicuspid aortic valve (1) and right superior vena cava to coronary sinus (1). CONCLUSIONS : Newborns exposed in utero to SSRIs, have a twofold higher risk of mild nonsyndromic heart defects than unexposed infants. The data suggest that women who require SSRI treatment during pregnancy can be reassured that the fetal risk is low and possible cardiac malformations will probably be mild. Late‐targeted ultrasound and fetal echocardiography at 22 to 23 weeks' gestation are recommended in this patient group. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
49.
The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a Tetranychus urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea (BPU) compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs.  相似文献   
50.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号