首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75334篇
  免费   3674篇
  国内免费   2218篇
  81226篇
  2024年   395篇
  2023年   1278篇
  2022年   1826篇
  2021年   2454篇
  2020年   2514篇
  2019年   3425篇
  2018年   2893篇
  2017年   2112篇
  2016年   2083篇
  2015年   2524篇
  2014年   4748篇
  2013年   5905篇
  2012年   3696篇
  2011年   4703篇
  2010年   3580篇
  2009年   3873篇
  2008年   3944篇
  2007年   3971篇
  2006年   3523篇
  2005年   3058篇
  2004年   2709篇
  2003年   2150篇
  2002年   1929篇
  2001年   1231篇
  2000年   951篇
  1999年   973篇
  1998年   977篇
  1997年   767篇
  1996年   685篇
  1995年   613篇
  1994年   566篇
  1993年   431篇
  1992年   433篇
  1991年   356篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   273篇
  1984年   455篇
  1983年   336篇
  1982年   347篇
  1981年   264篇
  1980年   201篇
  1979年   194篇
  1978年   172篇
  1977年   143篇
  1976年   115篇
  1975年   108篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
72.
The PIF1 helicase family performs many cellular functions. To better understand the functions of the human PIF1 helicase, we characterized the biochemical properties of its ATPase. PIF1 is very sensitive to temperature, whereas it is not affected by pH, and the ATPase activity of human PIF1 is dependent on the divalent cations Mg2+ and Mn2+ but not Ca2+ and Zn2+. Inhibition was observed when single-stranded DNA was coated with RPA or SSB. Moreover, the ATPase activity of PIF1 proportionally decreased with decreasing oligonucleotide length due to a decreased binding ability. A minimum of 10 oligonucleotide bases are required for PIF1 binding and the hydrolysis of ATP. The analysis of the biochemical properties of PIF1 together with numerous genetic observations should aid in the understanding of its cellular functions.  相似文献   
73.
Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal components STIM1 and ORAI1, has been particularly characterized in immune cells. In the nervous system, all STIM and ORAI homologs are expressed. This review summarizes current knowledge on distribution and function of STIM and ORAI proteins in central neurons and glial cells, i.e. astrocytes and microglia. STIM2 is required for SOCE in hippocampal synapses and cortical neurons, whereas STIM1 controls calcium store replenishment in cerebellar Purkinje neurons. In microglia, STIM1, STIM2, and ORAI1 regulate migration and phagocytosis. The isoforms ORAI2 and ORAI3 are candidates for SOCE channels in neurons and astrocytes, respectively. Due to the role of SOCE in neuronal and glial calcium homeostasis, dysfunction of STIM and ORAI proteins may have consequences for the development of neurodegenerative disorders, such as Alzheimer's disease.  相似文献   
74.
Neuronal activity results in release of K+ into the extracellular space of the central nervous system. If the excess K+ is allowed to accumulate, neuronal firing will be compromised by the ensuing neuronal membrane depolarization. The surrounding glial cells are involved in clearing K+ from the extracellular space by molecular mechanism(s), the identity of which have been a matter of controversy for over half a century. Kir4.1-mediated spatial buffering of K+ has been promoted as a major contributor to K+ removal although its quantitative and temporal contribution has remained undefined. We discuss the biophysical and experimental challenges regarding determination of the contribution of Kir4.1 to extracellular K+ management during neuronal activity. It is concluded that 1) the geometry of the experimental preparation is crucial for detection of Kir4.1-mediated spatial buffering and 2) Kir4.1 enacts spatial buffering of K+ during but not after neuronal activity.  相似文献   
75.
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.  相似文献   
76.
Recent studies have demonstrated the feasibility of using membrane ultrafiltration for the purification of pegylated proteins; however, the separations have all been performed at relatively low protein concentrations where intermolecular interactions are unimportant. The objective of this study was to examine the behavior at higher PEG concentrations and to develop an appropriate theoretical framework to describe the effects of intermolecular interactions. Ultrafiltration experiments were performed using pegylated α‐lactalbumin as a model protein with both neutral and charged composite regenerated cellulose membranes. The transmission of the pegylated α‐lactalbumin, PEG, and α‐lactalbumin all increase with increasing PEG concentration due to the increase in the solute partition coefficient arising from unfavorable intermolecular interactions in the bulk solution. The experimental results were in good agreement with a simple model that accounts for the change in Gibbs free energy associated with these intermolecular interactions, including the effects of concentration polarization on the local solute concentrations upstream of the membrane. These intermolecular interactions are shown to cause a greater than expected loss of pegylated product in a batch ultrafiltration system, and they alter the yield and purification factor that can be achieved during a diafiltration process to remove unreacted PEG. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:655–663, 2013  相似文献   
77.
《MABS-AUSTIN》2013,5(5):901-911
Fragmentation in the hinge region of an IgG1 monoclonal antibody (mAb) can affect product stability, potentially causing changes in potency and efficacy. Metals ions, such as Cu2+, can bind to the mAb and undergo hydrolysis or oxidation, which can lead to cleavage of the molecule. To better understand the mechanism of Cu2+-mediated mAb fragmentation, hinge region cleavage products and their rates of formation were studied as a function of pH with and without Cu2+. More detailed analysis of the chemical changes was investigated using model linear and cyclic peptides (with the sequence of SCDKTHTC) derived from the upper hinge region of the mAb. Cu2+ mediated fragmentation was determined to be predominantly via a hydrolytic pathway in solution. The sites and products of hydrolytic cleavage are pH and strain dependent. In more acidic environments, rates of Cu2+ induced hinge fragmentation are significantly slower than at higher pH. Although the degradation reaction rates between the linear and cyclic peptides are not significantly different, the products of degradation vary. mAb fragmentation can be reduced by modifying His, which is a potential metal binding site and a known ligand in other metalloproteins. These results suggest that a charge may contribute to stabilization of a specific molecular structure involved in hydrolysis, leading to the possible formation of a copper binding pocket that causes increased susceptibility of the hinge region to degradation.  相似文献   
78.
《MABS-AUSTIN》2013,5(8):1301-1311
ABSTRACT

Animal models used to evaluate efficacies of immune checkpoint inhibitors are insufficient or inaccurate. We thus examined two xenograft models used for this purpose, with the aim of optimizing them. One method involves the use of peripheral blood mononuclear cells and cell line-derived xenografts (PBMCs-CDX model). For this model, we implanted human lung cancer cells into NOD-scid-IL2Rg?/? (NSI) mice, followed by injection of human PBMCs. The second method involves the use of hematopoietic stem and progenitor cells and CDX (HSPCs-CDX model). For this model, we first reconstituted the human immune system by transferring human CD34+ hematopoietic stem and progenitor cells (HSPCs-derived humanized model) and then transplanted human lung cancer cells. We found that the PBMCs-CDX model was more accurate in evaluating PD-L1/PD-1 targeted immunotherapies. In addition, it took only four weeks with the PBMCs-CDX model for efficacy evaluation, compared to 10–14 weeks with the HSPCs-CDX model. We then further established PBMCs-derived patient-derived xenografts (PDX) models, including an auto-PBMCs-PDX model using cancer and T cells from the same tumor, and applied them to assess the antitumor efficacies of anti-PD-L1 antibodies. We demonstrated that this PBMCs-derived PDX model was an invaluable tool to study the efficacies of PD-L1/PD-1 targeted cancer immunotherapies. Overall, we found our PBMCs-derived models to be excellent preclinical models for studying immune checkpoint inhibitors.  相似文献   
79.
Eosinophils (Eo) participate in the inflammatory response to parasites, allergins, toxins, and epitopes recognized by autoimmune antibodies. Nonetheless, little attention has heretofore been paid to the interactions of Eo with extracellular matrix (ECM) proteins during their migration through the subendothelial basement membrane and into the surrounding tissue. Therefore, we have studied the adhesion of Eo to specific ECM proteins and the effect of this adhesion on Eo viability and maturation. Control Eo (from normal donors) adhere no better to substrates coated with laminin (LM), fibronectin (FN), cytotactin (CT), or collagen types I or IV (Col IV) than they do to human serum albumin coated substrates. In contrast, Eo activated in vitro with IL-5 or in vivo in patients with eosinophilia bind well to LM, FN and Col IV. LM is by far the most avid ligand among these molecules. For example, 43% of input cells bind to a substrate bearing 200 fmol/cm2 of LM; a similar level of adhesion to FN requires 30 times as much adsorbed protein. Antibody inhibition experiments suggest that the αβ1 integrin heterodimer is the predominant LM receptor on these cells. Flow cytometry showed similar levels of these subunits on control and activated Eo, suggesting that Eo adhesion to LM is not regulated simply by cell surface integrin concentration. The effects of ECM proteins on Eo behavior were also examined. A LM-coated substrate (with no added cytokine) was found to be almost as effective as IL-5 in maintaining Eo viability while an equally adhesive FN-coated substrate had much less effect. Normally, even in the presence of 10% serum, no Eo survive a 5-day incubation in vitro unless IL-3, IL-5, or GM-CSF is added to the medium. Conditions that inhibit adhesion to LM (anti-integrin antibodies in the medium or CT on the substrate) and certain anti-cy-tokine antibodies inhibited the promotion of Eo viability by LM. During incubation on LM, Eo become hypodense, as they do in the presence of IL-5, indicating that they have become activated. These observations suggest that the interactions of Eo and ECM proteins may be important both for their potential to direct Eo migration and for their ability to regulate Eo viability, cytokine production, and maturation.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号