首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49100篇
  免费   4046篇
  国内免费   1581篇
  54727篇
  2024年   120篇
  2023年   819篇
  2022年   1163篇
  2021年   1703篇
  2020年   1873篇
  2019年   2350篇
  2018年   2195篇
  2017年   1513篇
  2016年   1378篇
  2015年   1725篇
  2014年   2873篇
  2013年   3224篇
  2012年   1809篇
  2011年   2481篇
  2010年   1817篇
  2009年   2291篇
  2008年   2392篇
  2007年   2427篇
  2006年   2215篇
  2005年   1876篇
  2004年   1602篇
  2003年   1450篇
  2002年   1231篇
  2001年   857篇
  2000年   806篇
  1999年   646篇
  1998年   657篇
  1997年   648篇
  1996年   660篇
  1995年   633篇
  1994年   613篇
  1993年   552篇
  1992年   552篇
  1991年   489篇
  1990年   433篇
  1989年   384篇
  1988年   327篇
  1987年   346篇
  1986年   275篇
  1985年   406篇
  1984年   426篇
  1983年   246篇
  1982年   363篇
  1981年   298篇
  1980年   289篇
  1979年   262篇
  1978年   212篇
  1977年   179篇
  1976年   156篇
  1974年   107篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Résumé Pendant la période de reproduction, les néphrons du rein de l'Epinoche mâle subissent d'importantes modifications de structure sous l'action des hormones sexuelles. Au niveau de chacun d'entre eux, se différencient deux segments distincts par leur fonction et par leur cytologie. Le segment urinaire, très court, est formé de cellules identiques à celles du jeune, qui remplissent leur fonction d'excrétion. Le segment glandulaire, plus volumineux, subit une transformation muqueuse et élabore une sécrétion qui sert à construire le nid. L'évolution de ces deux segments est étudiée au cours de la période de reproduction et les modifications cytologiques correspondantes sont décrites.
Fine structure of the kidney of the three-spined-stickleback (Gasterosteus aculeate L.) during its mucous transformation
Summary Under the action of sexual hormones the nephrons of the kidney of the male three-spined-stickleback undergo considerable transformations during the breeding period. They differentiate into two segments which differ from one another in function and cytology. The cells of the urinary segment are identical to those of the young fish. They have an excretory function. The glandular segment undergoes a mucous transformation and synthesizes a secretion which is used for the building of the nest. The cytological transformations occuring at the level of these two segments during the breeding period are described with special attention to the mucous cells.
  相似文献   
72.
Retinoic acid (RA) inhibited the in vitro growth of the mouse mast cell tumor line P815 in a dose- and time-dependent manner. The inhibition was accompanied by an increase in the amount of neutral intracellular mucopolysaccharides. Study of cell cycle kinetics showed that exposure to retinoic acid led to a slowing-down of the cell-cycle progression possibly related to a more differentiated cell population disclosed by microscopy with a lower proliferative capacity. In vivo, delays in both tumor appearance and mouse mortality were observed after injecting RA into mice bearing mastocytomas. These results suggest that RA could be of interest in the treatment of human malignant systemic mastocytosis with proliferation of immature mast cells.  相似文献   
73.
The tricyclic antidepressant desipramine, when added to culture medium, gave rise in C6 rat glioma cells to a decrease of the activity of the enzyme asialofetuin sialyltransferase. The inhibition was dose and time dependent and was observed in both multiplying cells and cells blocked with 2 mM thymidine or depletion of amino acids. This inhibition was rather specific to the sialyltransferase, as under the conditions where this enzyme was inhibited up to 70%, other enzymes such as dolichol phosphate mannose synthetase, glutamine synthetase, and glycerol phosphate dehydrogenase remained unaffected. This inhibition was not reversed after removal of desipramine from the medium and was not observed by direct addition of desipramine to the sialyltransferase incubation assay. Under the same conditions, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], which is known to be a potent calmodulin antagonist and an inhibitor of calmodulin-dependent kinases, gave the same concentration-dependent inhibition profile of sialyltransferase as desipramine, whereas H-7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine], which is an inhibitor of protein kinase C and cyclic nucleotide-dependent kinases, had no effect. So, it is suggested that desipramine inhibits the sialyltransferase activity in C6 glioma cells through a calmodulin-dependent system.  相似文献   
74.
We investigated the effect of rat interferon-/ (IFN) on the expression of glycerol phosphate dehydrogenase (E.C.1.1.1.8; GPDH), in both C6 cells and pure cultures of oligodendrocytes. IFNs are naturally produced inhibitors of cell growth that can also affect differentiated cell functions. GPDH is a biochemical marker for oligodendrocytes and is known to be developmentally regulated and steroid inducible. GPDH activity is induced by hydrocortisone (HC) 3.5 fold in C6 cells and 5 fold in oligodendrocytes compared to untreated cultures. A pretreatment of these cells with 75 U/ml of rat IFN-/ resulted in an inhibition of the HC induction of GPDH enzymatic activity by 50% and 40% in C6 cells and oligodendrocytes respectively. We also found that IFN impaired the accumulation of GPDH mRNA in both cell types. These results demonstrate that IFNs are capable of modifying the cellular response to hormones in cells of neuroepithelial origin, and suggest the possibility that IFNs may be able to influence the development and function of the brain.Special issue dedicated to Dr. Paola S. Timiras  相似文献   
75.
H. Quader  H. Fast 《Protoplasma》1990,157(1-3):216-224
Summary The anastomosing ER system of epidermal cells of onion bulb scales is composed of three modifications: lamellar and tubular elements, located in the cell periphery, and long tubular stands located deeper in the cytoplasm. Cytoplasmic acidification of epidermal cells by loading with weak organic acids like acetic or propionic acid causes the decay of the lamellar elements and the disappearance of long tubular strands. Organelle movement is also inhibited. The effects depend on the pH of the incubation medium and on the administered acid concentration, and are characterized by a distinct lag phase of about 7 min. The induced ER changes are transient with adaptation starting after about 50min. Buffer components alone have little influence on the cellular ER organization within a pH-range of 4.0–8.0. However, the pH of the medium strongly affects the time course of the effects as well as recovery after omitting the administered acid. Both modulation and recovery occur more rapidly at neutral or slightly alkaline pH. Actin filaments, which play a major role in ER organization and organelle movement, are not affected by cytosolic acidification.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   
76.
The development of a continuous anaerobic process for stereospecific Δ4-3-keto-steroid reduction by immobilized Clostridium paraputrificum cells cells is described. Following a study on conditions for cell growth and sporulation, spores of C. paraputrificum were aseptically immobilized in PAAH beads. Conditions for cell growth and induction in the immobilized state were determined, as well as the medium composition required to maintain a stabilized immobilized cell population. The effect of the concentration of ethylene glycol added as selected cosolvent on reaction kinetics, substrate solubility, specific activity, and cell growth, was investigated. A 10% (v/v) cosolvent input provided maximal activity along with enhanced solubility of the steroidal substrate. It was shown that cell growth was enhanced in the presence of the added cosolvent in addition to its effect on substrate solubility and enzymic activity. The immobilized cells readily performed Δ4, as well as 3-keto steroid reduction of several steroids, including ADD, AD, 16-dehydroprogesterone, progesterone, and hydrocortisone. It was shown that repeated batch-wise reduction cycle—in the presence of the cosolvent—resulted in rapid loss of activity, while the continuous uninterrupted process permitted the attaining of full bioconversion level, maintained stable for at least the period of 5 days of continuous operation tested.  相似文献   
77.
A method has been developed for the study of somatostatin (SS) binding to dissociated cells from rat cerebral cortex. Binding of [125I][Tyr11]SS to cells obtained by mechanical dissociation of rat cerebral cortex was dependent on time and temperature, saturable, reversible and highly specific. Under conditions of equilibrium, i.e., 60 min at 25°C, native SS inhibited tracer binding in a dose-dependent manner. The Scatchard analysis of binding data was linear and yielded a dissociation constant of 0.60±0.08 nM with a maximal binding capacity of 160±16 fmol/mg protein. The binding of [125I][Tyr11]SS was specific as shown in experiments on tracer displacement by the native peptide, SS analogues, and unrelated peptides.  相似文献   
78.
Summary— The distribution of calbindin D28k in the digestive system and the urinary bladder of the toad was investigated using immunohistochemistry and Western blotting. By analogy with mammals and birds, the protein was expected to be located preferentially in the duodenal part of the intestine. Interestingly, absorptive cells of the duodenum were totally devoid of calbindin D28k while the colon contained high amounts of the calcium-binding protein. This reversed polarity of calbindin D28k content in the toad intestine should obviously correspond to a different scheme of calcium absorption regulation between amphibians and higher vertebrates. Calbindin D28k containing neuroendocrine-like cells were found scattered in the proximal parts of the gut with a similar distribution to what has been described in rat and chick intestine. The oesophagus, the stomach, and the intrinsic nervous sytem of the intestine were negative. No significant amounts of the proteins were found in the urinary bladder, which is known to be a site of Ca2+ active transport.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号