首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47914篇
  免费   17578篇
  国内免费   405篇
  65897篇
  2024年   17篇
  2023年   92篇
  2022年   132篇
  2021年   603篇
  2020年   2937篇
  2019年   4532篇
  2018年   4747篇
  2017年   4707篇
  2016年   4410篇
  2015年   4275篇
  2014年   4340篇
  2013年   4740篇
  2012年   4047篇
  2011年   4265篇
  2010年   3690篇
  2009年   2549篇
  2008年   2715篇
  2007年   2177篇
  2006年   2155篇
  2005年   1827篇
  2004年   1437篇
  2003年   1538篇
  2002年   1313篇
  2001年   989篇
  2000年   524篇
  1999年   361篇
  1998年   86篇
  1997年   76篇
  1996年   75篇
  1995年   66篇
  1994年   58篇
  1993年   59篇
  1992年   65篇
  1991年   31篇
  1990年   24篇
  1989年   24篇
  1988年   22篇
  1987年   13篇
  1986年   17篇
  1985年   18篇
  1984年   21篇
  1983年   18篇
  1982年   19篇
  1981年   17篇
  1980年   9篇
  1979年   10篇
  1978年   14篇
  1976年   7篇
  1975年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
62.
张柳平  姚淑敏  林哲  崔峰 《昆虫学报》2013,56(5):566-569
马拉硫磷是一种高效低毒的有机磷杀虫剂, 分子量大且结构特殊, 广泛用于农业害虫的防治。羧酸酯酶突变是昆虫对有机磷类杀虫剂产生代谢抗性的重要机制之一。本实验室前期已从棉蚜Aphis gossypii、 褐飞虱Nilaparvata lugens、 斜纹夜蛾Spodoptera litura、 家蚕Bombyx mori、 异色瓢虫Harmonia axyridis、 赤拟谷盗Tribolium castaneum和西方蜜蜂Apis mellifera中各克隆了一个非特异性羧酸酯酶基因, 通过体外定点突变构建了G/A151D和W271L两种突变体, 并进行了原核细胞表达和纯化。本实验在体外测定了这7种昆虫野生型和两种突变型羧酸酯酶对马拉硫磷的降解。结果显示: 棉蚜、 西方蜜蜂、 斜纹夜蛾、 赤拟谷盗的野生型羧酸酯酶能够降解马拉硫磷, 两个突变并不能提高它们的降解活性, 而家蚕、 异色瓢虫和褐飞虱的野生型羧酸酯酶不能降解马拉硫磷, G/A151D和/或W271L突变能使这些酯酶获得马拉硫磷羧酸酯酶(MCE)的活性, 有可能使这些昆虫对马拉硫磷产生抗性。不同物种的MCE活性相差较大, 斜纹夜蛾的MCE活性最高, 其kcat/Km值为1.8~1.9 L/μmol·min, 其次是赤拟谷盗, 其Kcat/Km值为0.87~0.95 L/μmol·min, 其他昆虫的MCE活性相对较低, 相差可高达10倍。  相似文献   
63.
We investigated the expression of KIT (product of c-kit oncogene), gain-of-function mutations, and activation of its downstream signal transduction in human testicular cancers. KIT was expressed in 88% (22/25) of seminomas and in 44.4% (4/9) of non-seminomas compared to adjacent normal testicular tissue. Nine of the KIT-expressing seminomas had mutations (40.9%; 9/22) in the c-kit gene; two cases in exon 11 and 7 cases in exon 17. Two of these mutations in exon 17 were novel, and the other seven mutations were identical to the already known gain-of-function mutations which cause activation of KIT without ligand stem cell factor. All of the mutant KIT and 53.8% (7/13) of wild-type KIT were phosphorylated (activated) and associated with phosphorylated phosphatidylinositol 3-kinase (PI3K). Akt was also phosphorylated in these seminomas, suggesting that the KIT-PI3K-Akt pathway is activated in seminoma. These findings suggest that the KIT-PI3K-Akt pathway is constitutively activated in testicular germ cell tumors, due to overexpression of KIT protein and/or gain-of-function mutations in the c-kit gene.  相似文献   
64.
This review provides an overview of the structure, function, and catalytic mechanism of lacZ β‐galactosidase. The protein played a central role in Jacob and Monod's development of the operon model for the regulation of gene expression. Determination of the crystal structure made it possible to understand why deletion of certain residues toward the amino‐terminus not only caused the full enzyme tetramer to dissociate into dimers but also abolished activity. It was also possible to rationalize α‐complementation, in which addition to the inactive dimers of peptides containing the “missing” N‐terminal residues restored catalytic activity. The enzyme is well known to signal its presence by hydrolyzing X‐gal to produce a blue product. That this reaction takes place in crystals of the protein confirms that the X‐ray structure represents an active conformation. Individual tetramers of β‐galactosidase have been measured to catalyze 38,500 ± 900 reactions per minute. Extensive kinetic, biochemical, mutagenic, and crystallographic analyses have made it possible to develop a presumed mechanism of action. Substrate initially binds near the top of the active site but then moves deeper for reaction. The first catalytic step (called galactosylation) is a nucleophilic displacement by Glu537 to form a covalent bond with galactose. This is initiated by proton donation by Glu461. The second displacement (degalactosylation) by water or an acceptor is initiated by proton abstraction by Glu461. Both of these displacements occur via planar oxocarbenium ion‐like transition states. The acceptor reaction with glucose is important for the formation of allolactose, the natural inducer of the lac operon.  相似文献   
65.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   
66.
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant–soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant–soil feedback constitute sufficient conditions for stabilisation of two‐species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence‐invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density‐dependence, frequency‐dependence, and plant–soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.  相似文献   
67.
To investigate early intermediates of β2‐microglobulin (β2m) amyloidogenesis, we solved the structure of β2m containing the amyloidogenic Pro32Gly mutation by X‐ray crystallography. One nanobody (Nb24) that efficiently blocks fibril elongation was used as a chaperone to co‐crystallize the Pro32Gly β2m monomer under physiological conditions. The complex of P32G β2m with Nb24 reveals a trans peptide bond at position 32 of this amyloidogenic variant, whereas Pro32 adopts the cis conformation in the wild‐type monomer, indicating that the cis to trans isomerization at Pro32 plays a critical role in the early onset of β2m amyloid formation.  相似文献   
68.
Defects in apoptotic system may contribute in the pathogenesis and resistance of malignant melanoma cells to chemotherapy. Apoptotic protease‐activating factor‐1 (Apaf‐1) is a cell death effector that acts with cytochrome c and caspase‐9 to mediate apoptosis. Recently it was shown that metastatic melanomas often lose Apaf‐1 and are concomitantly resistant to apoptosis. It is not known, however, whether Apaf‐1 protein is lost during melanoma progression from localized to metastatic tumor. To this end, we evaluated Apaf‐1 protein expression by immunohistochemistry in 10 cases of human nevi, 11 melanomas in situ, 26 primary melanomas and 15 metastases. Significant decreases in Apaf‐1 expression was observed when comparing nevi and melanomas (chi‐square = 33.719; P < 0.0001). Moreover, primary melanomas with greater tumor thickness showed lesser expression of Apaf‐1 (chi‐square = 16.182; P < 0.003). Intriguingly, we were unable to detect Apaf‐1 expression in lesions of metastatic melanomas. These data demonstrated that there is an inverse correlation between Apaf‐1 expression and pathologic stage of melanoma. This suggests that the decreased expression of Apaf‐1 seen in correlation with melanoma progression renders melanoma more resistant to chemotherapy.  相似文献   
69.
70.
The molecular complexity of mammalian proteomes demands new methods for mapping the organization of multiprotein complexes. Here, we combine mouse genetics and proteomics to characterize synapse protein complexes and interaction networks. New tandem affinity purification (TAP) tags were fused to the carboxyl terminus of PSD‐95 using gene targeting in mice. Homozygous mice showed no detectable abnormalities in PSD‐95 expression, subcellular localization or synaptic electrophysiological function. Analysis of multiprotein complexes purified under native conditions by mass spectrometry defined known and new interactors: 118 proteins comprising crucial functional components of synapses, including glutamate receptors, K+ channels, scaffolding and signaling proteins, were recovered. Network clustering of protein interactions generated five connected clusters, with two clusters containing all the major ionotropic glutamate receptors and one cluster with voltage‐dependent K+ channels. Annotation of clusters with human disease associations revealed that multiple disorders map to the network, with a significant correlation of schizophrenia within the glutamate receptor clusters. This targeted TAP tagging strategy is generally applicable to mammalian proteomics and systems biology approaches to disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号