首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8361篇
  免费   813篇
  国内免费   636篇
  2024年   34篇
  2023年   230篇
  2022年   298篇
  2021年   485篇
  2020年   541篇
  2019年   728篇
  2018年   485篇
  2017年   286篇
  2016年   338篇
  2015年   343篇
  2014年   579篇
  2013年   615篇
  2012年   394篇
  2011年   545篇
  2010年   364篇
  2009年   396篇
  2008年   399篇
  2007年   413篇
  2006年   354篇
  2005年   329篇
  2004年   256篇
  2003年   237篇
  2002年   202篇
  2001年   105篇
  2000年   80篇
  1999年   83篇
  1998年   74篇
  1997年   64篇
  1996年   54篇
  1995年   46篇
  1994年   42篇
  1993年   48篇
  1992年   32篇
  1991年   27篇
  1990年   31篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   26篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有9810条查询结果,搜索用时 15 毫秒
71.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   
72.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
73.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   
74.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
75.
Effects of dark incubation at different temperatures were studied on dormancy and respiratory activity of seeds of Sisymbrium officinale (L.) Scop. Because germination of this species absolutely depends on the simultaneous action of light and nitrate, changes in dormancy could be studied in darkness without the interference of early germination events. Upon the start of incubation rates of O2 uptake and CO2 release rose. This was followed by a gradual decrease until stable levels of O2 uptake and CO2 release were achieved. Seeds kept for prolonged periods at 24°C, showed neither a change in germination capacity nor in rates of O2 uptake and CO2 release. Respiratory quotients were 0.55–0.7. The initial rise in O2 uptake correlated with the rate of water uptake and with breaking of primary dormancy. However, the subsequent decline in O2 uptake was not generally linked to induction of secondary dormancy. An increased O2 uptake was not required during breaking of secondary dormancy. It is concluded that changes in dormancy are not generally related to changes in respiratory activity. However, germination strongly depends on respiration. The increase in O2 uptake started well before radicle protrusion. A far red irradiation only reversed this increase when it was given before germination escaped from its red light antagonising action. The contribution of different respiratory pathways was followed during prolonged incubation at 24°C in darkness. KCN at 1.5 mM was needed to inhibit the cytochrome pathway (CP) and benzohydroxamic acid (BHAM) at 30 mM to inhibit the alternative pathway (AP). These concentrations did not exert any side effects. Electron flow was predominantly via the CP, maximally 10% was via the AP. Flow through the CP declined during the first 6 days and residual respiration remained constant. Therefore, the contribution of residual respiration became relatively more important with prolonged incubation. KCN at concentrations that almost completely inhibited flow through the CP, did not dramatically reduce germination. BHAM already inhibited germination at concentrations that do not inhibit oxygen uptake.  相似文献   
76.
Summary— The vectorial transport of membrane and macromolecules within the cytoplasm of eukaryotic cells has been the subject of intense investigation over the last decade. In this paper we review some of the recent advances made in our understanding of vesicle transport and the secretory pathway in plant cells.  相似文献   
77.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   
78.
Biochemical studies on anaerobic phenylme-thylether cleavage by homoacetogenic bacteria have been hampered so far by the complexity of the reaction chain involving methyl transfer to acetyl-CoA synthase and subsequent methyl group carbonylation to acetyl-CoA. Strain TMBS 4 differs from other demethylating homoacetogenic bacteria in using sulfide as a methyl acceptor, thereby forming methanethiol and dimethylsulfide. Growing and resting cells of strain TMBS 4 used alternatitively CO2 as a precursor of the methyl acceptor CO for homoacetogenic acetate formation. Demethylation was inhibited by propyl iodide and reactivated by light, indicating involvement of a corrinoid-dependent methyltransferase. Strain TMBS 4 contained ca. 750 nmol g dry mass-1 of a corrinoid tentatively identified as 5-hydroxybenzimidazolyl cobamide. A photometric assay for measuring the demethylation activity in cell extracts was developed based on the formation of a yellow complex of Ti3+ with 5-hydroxyvanillate produced from syringate by demethylation. In cell extracts, the methyltransfer reaction from methoxylated aromatic compounds to sulfide or methanethiol depended on reductive activation by Ti3+. ATP and Mg2+ together greatly stimulated this reductive activation without being necessary for the demethylation reaction itself. The specific activity of the transmethylating enzyme system increased proportionally with protein concentration up to 3 mg ml-1 reaching a constant level of 20 nmol min-1 mg-1 at protein concentrations 10 mg ml-1. The specific rate of activation increased in a non-linear manner with protein concentration. Strain TMBS 4 degraded gallate, the product of sequential demethylations, to 3 acetate through the phloroglucinol pathway as found earlier with Pelobacter acidigallici.Abbreviations BV benzyl viologen - CTAB cetyltrimethylammonium bromide - H4folate tetrahydrofolate - MOPS 3-[N-morpholino]propanesulfonic acid - MV methyl viologen - NTA nitrilotriacetate - td doubling time - TMB 3,4,5-trimethoxybenzoate  相似文献   
79.
聚谷氨酸(polyglutamic acid, PGA)作为一种天然多功能的聚合物,近年来成为研究的热点。由于很难通过化学方法合成,微生物发酵是目前生产聚谷氨酸的有效途径。【目的】从基因水平探究枯草芽孢杆菌聚谷氨酸合成途径中degS、degQ、degU、swrA、rocA、putM基因的功能,通过分子改造实现对代谢途径的调控。【方法】以枯草芽孢杆菌为出发菌株,通过对代谢途径中相关基因进行敲除或过表达,分别构建degS、degQ和degU基因缺失的重组菌,swrA、rocA和putM基因过表达的重组菌,借助菌株胞外聚谷氨酸积累的变化分析影响途径的关键节点。【结果】在摇瓶发酵条件下,重组菌Bacillus subtilis 168-swrA、Bacillus subtilis 168-rocA、Bacillus subtilis 168-putM的胞外聚谷氨酸含量分别是原始菌株的1.28倍、1.47倍和1.37倍。重组菌Bacillus subtilis 168-ΔdegS、Bacillus subtilis 168-ΔdegQ、Bacillus subtilis 168-ΔdegU的胞外...  相似文献   
80.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant responses to both biotic and abiotic stress. A screen of a Nicotiana benthamiana cDNA virus-induced gene silencing (VIGS) library for altered plant responses to inoculation with Phytophthora infestans previously identified an NbMKK gene, encoding a clade D MAPKK that we renamed as NbMKK5, which is involved in immunity to P. infestans. To study the role of the potato orthologous gene, referred to as StMKK5, in the response to P. infestans, we transiently overexpressed StMKK5 in N. benthamiana and observed that cell death occurred at 2 days postinfiltration. Silencing of the highly conserved eukaryotic protein SGT1 delayed the StMKK5-induced cell death, whereas silencing of the MAPK-encoding gene NbSIPK completely abolished the cell death response. Further investigations showed that StMKK5 interacts with, and directly phosphorylates, StSIPK. Furthermore, both StMKK5 and StSIPK trigger salicylic acid (SA)- and ethylene (Eth)-related gene expression, and co-expression of the salicylate hydroxylase NahG with the negative regulator of Eth signalling CTR1 hampers StSIPK-triggered cell death. This observation indicates that the cell death triggered by StMKK5-StSIPK is dependent on the combination of SA- and Eth-signalling. By introducing point mutations, we showed that the kinase activity of both StMKK5 and StSIPK is required for triggering cell death. Genetic analysis showed that StMKK5 depends on StSIPK to trigger plant resistance. Thus, our results define a potato StMKK5-SIPK module that positively regulates immunity to P. infestans via activation of both the SA and Eth signalling pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号