首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2379篇
  免费   154篇
  国内免费   60篇
  2024年   2篇
  2023年   31篇
  2022年   41篇
  2021年   56篇
  2020年   72篇
  2019年   125篇
  2018年   109篇
  2017年   73篇
  2016年   72篇
  2015年   89篇
  2014年   211篇
  2013年   175篇
  2012年   147篇
  2011年   236篇
  2010年   156篇
  2009年   142篇
  2008年   145篇
  2007年   155篇
  2006年   152篇
  2005年   111篇
  2004年   79篇
  2003年   72篇
  2002年   66篇
  2001年   33篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有2593条查询结果,搜索用时 15 毫秒
31.
32.
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand- activated PRRs and initiate pattern -triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.  相似文献   
33.
《Autophagy》2013,9(10):1537-1539
The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LRRK2) gene is related to PD and its implication in autophagy regulation has been described. Our recent work shows that the presence of the G2019S LRRK2 mutation, one of the most prevalent in LRRK2, is accompanied by a deregulation of autophagy basal levels dependent on the MAPK1/3 (ERK2/1) pathway.  相似文献   
34.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
35.
Based on bioinformatics interrogation of the genome, > 500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4′-methyl-N2-3-pyridinyl-4,5′-bi-1,3-thiazole-2,2′-diamine (JNK Docking (JD) compound 123, but not the related compound (4′-methyl-N ~ 2 ~ -(6-methyl-2-pyridinyl)-4,5′-bi-1,3-thiazole-2,2′-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10 μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.  相似文献   
36.
白念珠菌是人类最常见的条件致病菌。促分裂素原活化蛋白激酶(MAPK链)是真核生物信号传递网络中的重要途径之一,在基因表达调控和细胞质功能活动中发挥关键作用。在白念珠菌中主要有4条MAPK途径:Mkcl途径、Cekl途径、Cek2途径和HOG途径。其中HOG途径在白念珠菌MAPK信号通路起着重要的作用。对于白念珠菌MAPK信号通路的作用及相关调控机制的了解,可以为寻找新的药物作用靶点,治疗念珠菌病提供帮助。  相似文献   
37.
Triple-negative breast cancer (TNBC) is highly metastatic and frequently has a poor prognosis. The lack of comprehension of TNBC and gene therapy targets has led to limitedly effective treatment for TNBC. This study was conducted to better understand the molecular mechanism behind TNBC progression, and to find out promising gene therapy targets for TNBC. Herein the influence of miR-122-5p's binding charged multivesicular body protein 3 (CHMP3) 3′-untranslated region (3′-UTR) on in TNBC cells was investigated. in vitro experiments quantitative real-time polymerase chain reaction, immunoblot analysis, dual-luciferase reporter gene assay, cell counting assay, transwell invasion assay, and flow cytometry-determined cell apoptosis assay were employed. We also used TargetScan Human 7.2 database to find out the target relationship between miR-122-5p and CHMP3 3′-UTR. TImer algorithm was used to provide an overview of the expression of CHMP3 gene across human pan-cancer, to predict the survival outcome of breast cancer patients, and to predict the correlation between CHMP3 gene expression and epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK)-related gene expression. CHMP3 gene was significantly downregulated across a wide range of human cancers including breast cancer (BRCA). A higher level of CHMP3 gene predicted a better 3- and 5-year survival outcome of patients with BRCA. In our experiments, miR-122-5p was significantly upregulated and CHMP3 gene was significantly downregulated in TNBC cells compared with normal cell line. miR-122-5p mimics enhanced TNBC cell viability, proliferation, and invasion whereas the upregulation of CHMP3 gene led to an opposite outcome. Forced expression of miR-122-5p suppressed cell apoptosis, compelled EMT and MAPK signaling whereas forced expression of CHMP3 did the opposite. We then conclude that miR-122-5p promotes aggression and EMT in TNBC by suppressing CHMP3 through MAPK signaling.  相似文献   
38.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   
39.
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.  相似文献   
40.
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号