首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2357篇
  免费   121篇
  国内免费   60篇
  2538篇
  2024年   2篇
  2023年   31篇
  2022年   41篇
  2021年   56篇
  2020年   72篇
  2019年   125篇
  2018年   106篇
  2017年   56篇
  2016年   65篇
  2015年   84篇
  2014年   206篇
  2013年   167篇
  2012年   139篇
  2011年   234篇
  2010年   156篇
  2009年   142篇
  2008年   145篇
  2007年   155篇
  2006年   152篇
  2005年   111篇
  2004年   79篇
  2003年   72篇
  2002年   66篇
  2001年   33篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   7篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有2538条查询结果,搜索用时 0 毫秒
31.
32.
This study aimed to uncover the protective potentiality of resveratrol and dimethyl fumarate (DMF) in the liver of a chronic unpredictable mild stress (CUMS)‐induced depression animal model. Resveratrol and DMF significantly alleviated CUMS‐induced behavioral abnormalities in stressed rats through improving sucrose preference in sucrose preference test and decreasing immobility time in a forced swimming test. They also mitigated serum corticosterone levels and elevated serum serotonin levels, which were formerly disturbed in CUMS rats. The hepatoprotective effect is evidenced by improvement in hepatic histopathological examinations, as well as normalized serum alanine aminotransferase and aspartate aminotransferase activities. Molecular signaling of resveratrol and DMF was estimated by diminishing hepatic expression of phosphorylated p38 mitogen‐activated protein kinase (MAPK), extracellular signal‐regulated kinase1/2 (ERK1/2), and c‐Jun N‐terminal kinase (JNK). Consequently, they improved the hepatic antioxidant and anti‐inflammatory activities as elaborated by the normalization of total antioxidant capacity, glutathione, malondialdehyde, nuclear factor‐κB, tumor necrosis factor‐α, and myeloperoxidase levels. In addition, they inhibited hepatocyte apoptosis as evidenced by the increased expression of B‐cell lymphoma 2, the decreased expression of Bax, as well as the suppressed activity of caspase‐3. In conclusion, resveratrol and DMF purveyed a significant anti‐depressant effect, which may be mediated, at least in part, via inhibiting the MAPK/ERK/JNK pathway in the CUMS rat model.  相似文献   
33.
34.
The calcium/calmodulin-dependent kinase II (CaMKII) participates with Ras to Raf-1 activation, and it is necessary for activation of the extracellular signal-regulated kinase (ERK) by different factors in epithelial and mesenchimal cells. Raf-1 activation is a complex multistep process, and its maximal activation is achieved by phosphorylation at Y341 by Src and at S338 by other kinase/s. Although early data proposed the involvement of p21-activated kinase 3 (Pak3), the kinase phosphorylating S338 remains to be definitively identified. In this study, we verified the hypothesis that CaMKII phosphorylates Raf-1 at Ser338. To do so, we determined the role of CaMKII in Raf-1 and ERK activation by oncogenic Ras and other factors. Serum, fibronectin, SrcY527 and RasV12 activated CaMKII and ERK, at different extents. The inhibition of CaMKII attenuated Raf-1 and ERK activation by all these factors. CaMKII was also necessary for the phosphorylation of Raf-1 at S338 by serum, fibronectin and Ras. Conversely, inhibition of Pak3 activation by blocking phosphatidylinositol 3-kinase was ineffective. The direct phosphorylation of S338 Raf-1 by CaMKII was demonstrated in vitro by interaction of purified kinases. These results demonstrate that Ras activates CaMKII, which, in turn, phosphorylates Raf-1 at S338 and participates in ERK activation upon different stimuli.  相似文献   
35.
《Autophagy》2013,9(12):1811-1821
Although it is known that tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10/TRAIL) induces autophagy, the mechanism by which autophagy is activated by TNFSF10 is still elusive. In this report, we show evidence that TRAF2- and RIPK1-mediated MAPK8/JNK activation is required for TNFSF10-induced cytoprotective autophagy. TNFSF10 activated autophagy rapidly in cancer cell lines derived from lung, bladder and prostate tumors. Blocking autophagy with either pharmacological inhibitors or siRNAs targeting the key autophagy factors BECN1/Beclin 1 or ATG7 effectively increased TNFSF10-induced apoptotic cytotoxicity, substantiating a cytoprotective role for TNFSF10-induced autophagy. Blocking MAPK8 but not NFκB effectively blocked autophagy, suggesting that MAPK8 is the main pathway for TNFSF10-induced autophagy. In addition, blocking MAPK8 effectively inhibited degradation of BCL2L1/Bcl-xL and reduction of the autophagy-suppressing BCL2L1–BECN1complex. Knockdown of TRAF2 or RIPK1 effectively suppressed TNFSF10-induced MAPK8 activation and autophagy. Furthermore, suppressing autophagy inhibited expression of antiapoptosis factors BIRC2/cIAP1, BIRC3/cIAP2, XIAP and CFLAR/c-FLIP and increased the formation of TNFSF10-induced death-inducing signaling complex (DISC). These results reveal a critical role for the MAPK8 activation pathway through TRAF2 and RIPK1 for TNFSF10-induced autophagy that blunts apoptosis in cancer cells. Thus, suppression of MAPK8-mediated autophagy could be utilized for sensitizing cancer cells to therapy with TNFSF10.  相似文献   
36.
37.
Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand- activated PRRs and initiate pattern -triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.  相似文献   
38.
《Autophagy》2013,9(10):1537-1539
The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LRRK2) gene is related to PD and its implication in autophagy regulation has been described. Our recent work shows that the presence of the G2019S LRRK2 mutation, one of the most prevalent in LRRK2, is accompanied by a deregulation of autophagy basal levels dependent on the MAPK1/3 (ERK2/1) pathway.  相似文献   
39.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
40.
Based on bioinformatics interrogation of the genome, > 500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4′-methyl-N2-3-pyridinyl-4,5′-bi-1,3-thiazole-2,2′-diamine (JNK Docking (JD) compound 123, but not the related compound (4′-methyl-N ~ 2 ~ -(6-methyl-2-pyridinyl)-4,5′-bi-1,3-thiazole-2,2′-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10 μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号