Context: Cluster of differentiation 40 (CD40), and its ligand CD40L, are major co-stimulatory molecules whose interactions are important in both cellular and humoral immunity, and has been suggested to play a role in the pathogenesis of acute coronary syndrome.
Objective: The aim of this study was to examine the association of CD40 polymorphisms (-1?C>T (rs1883832) and 945G>T (rs4810485)) and myocardial infarction (MI), and to test the association of CD40 gene haplotypes with MI in Tunisians.
Materials and methods: Three hundred and fifty MI patients and 301 apparently healthy controls were included in the study. The polymorphisms of CD40 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
Results: There were significant differences in the genotype and allele frequencies of CD40 gene -1?C>T (rs1883832) polymorphism between cases and controls. Stratifying according to gender, the association between the TT genotype and MI was statistically significant in males, only. Haplotype analysis revealed that the C-T and T-G haplotypes were associated with an increased risk of MI (p?=?0.012 and p?<?0.001, respectively).
Conclusions: Our work showed a significant association between the -1?C>T (rs1883832) polymorphism of the CD40 gene and MI in the Tunisians. 相似文献
DNA damage by UV and UV-mimetic agents elicits a set of inter-related responses in mammalian cells, including DNA repair, DNA damage checkpoints, and apoptosis. Conventionally, these responses are analyzed separately using different methodologies. Here we describe a unified approach that is capable of quantifying all three responses in parallel using lysates from the same population of cells. We show that a highly sensitive in vivo excision repair assay is capable of detecting nucleotide excision repair of a wide spectrum of DNA lesions (UV damage, chemical carcinogens, and chemotherapeutic drugs) within minutes of damage induction. This method therefore allows for a real-time measure of nucleotide excision repair activity that can be monitored in conjunction with other components of the DNA damage response, including DNA damage checkpoint and apoptotic signaling. This approach therefore provides a convenient and reliable platform for simultaneously examining multiple aspects of the DNA damage response in a single population of cells that can be applied for a diverse array of carcinogenic and chemotherapeutic agents. 相似文献
Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free-energy calculations and with our new dynamic importance sampling (DIMS) molecular dynamics method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular, four ionic bonds that open in a sequential, zipper-like fashion and, thus, dominate the free-energy landscape of the transition are identified. Transitions between the closed and open conformations only have to overcome moderate free-energy barriers. Unexpectedly, the closed state and the open state encompass broad free-energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental Förster resonance energy transfer measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS molecular dynamics computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK. 相似文献
Protein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding. Since motor proteins are found either at the cis- or trans-side of the membrane, different mechanisms for translocation have been proposed. In the Power stroke model, cis-acting motors are thought to push, while trans-motors pull on the substrate protein during translocation. In the Brownian ratchet model, translocation occurs by diffusion of the unfolded polypeptide through the translocation pore while directionality is achieved by trapping and refolding. Recent insights in the structure and function of the molecular motors suggest that different mechanisms can be employed simultaneously. 相似文献
Nucleotide variation in populations originating from the recent range expansion of a species should reflect their adaptation to new habitats as well as their demographic history. A survey of nucleotide variation at 109 noncoding X-chromosome fragments in a European population of Drosophila melanogaster allowed identifying some candidates to have been recently affected by positive selection. Adaptive changes leave a spatial differential footprint that can be used to discriminate among candidates by extending their study to neighboring regions. Here, we surveyed variation at an approximately 190-kb region spanning a locus exhibiting a significantly skewed frequency spectrum. A stretch of approximately 12 kb with reduced variation was detected within a continuously sequenced region that included the focal fragment. Moreover, the regions flanking this stretch exhibited an excess of high-frequency derived variants. Application of maximum likelihood ratio and goodness-of-fit tests suggested that the pattern of variation detected at the studied region (at cytological bands 17C-17D) might have been shaped by a recent selective change, most probably at or around the phantom gene that encodes CYP306A1, a cytochrome P450 enzyme in the ecdysteroidogenic pathway. 相似文献
Grey horses are born coloured, turn progressively grey and often develop melanomas late in life. Grey shows an autosomal dominant inheritance and the locus has previously been mapped to horse chromosome 25 (ECA25), around the TXN gene. We have now developed eight new single nucleotide polymorphisms (SNPs) associated with genes on ECA25 using information on the linear order of genes on human chromosome 9q, as well as the human and mouse coding sequences. These SNPs were mapped in relation to the Grey locus using more than 300 progeny from matings between two Swedish Warmblood grey stallions and non-grey mares. Grey was firmly assigned to an interval with flanking markers NANS and ABCA1. This corresponds to a region of approximately 6.9 Mb on human chromosome 9q. Furthermore, no recombination was observed between Grey, TGFBR1 and TMEFF1, the last two being 1.4 Mb apart in human. There are no obvious candidate genes in this region and none of the genes has been associated with pigmentation disorders or melanoma development, suggesting that the grey phenotype is caused by a mutation in a novel gene. 相似文献
Nucleotide‐Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein‐Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′‐UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle. 相似文献
Viral genomic RNA—both single-stranded (ss) and double-stranded (ds)—is recognized by RNA-sensing Toll-like receptors (TLRs), notably TLR3 (dsRNA), TLR7 (ssRNA), and TLR8 (ssRNA). However, our knowledge of the roles of porcine TLR3, 7, and 8 in antiviral immunity is inadequate.
Methods
From information on exon–intron boundaries obtained through comparisons of the genomic and cDNA sequences, polymorphisms in the coding sequences of each gene were detected in 84 male pigs of 11 breeds.
Results
Genomic structures are conserved between pigs and humans. The RNA-sensing TLR genes had fewer polymorphisms causing amino acid alterations than did the cell-surface TLR genes, but the alterations were distributed with a similar bias toward ectodomains.
Conclusions
The low level of diversity of substitutive polymorphisms in RNA-sensing TLRs than cell-surface ones implies that polymorphisms severely affecting function have been eliminated by selection pressure during longstanding pig breeding.
General significance
Recognition of virus-derived RNA is critical in host defense against infection. These results should provide a useful clue to analysis of the association between polymorphisms in RNA-sensing TLRs and disease resistance. 相似文献