首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4539篇
  免费   364篇
  国内免费   96篇
  2024年   4篇
  2023年   82篇
  2022年   110篇
  2021年   86篇
  2020年   109篇
  2019年   157篇
  2018年   196篇
  2017年   159篇
  2016年   162篇
  2015年   199篇
  2014年   399篇
  2013年   439篇
  2012年   313篇
  2011年   446篇
  2010年   420篇
  2009年   301篇
  2008年   225篇
  2007年   216篇
  2006年   229篇
  2005年   215篇
  2004年   112篇
  2003年   81篇
  2002年   54篇
  2001年   36篇
  2000年   24篇
  1999年   32篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   9篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   33篇
  1984年   23篇
  1983年   3篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   10篇
  1973年   7篇
排序方式: 共有4999条查询结果,搜索用时 109 毫秒
61.
Today, 2D online or offline liquid chromatography/mass spectrometry is state of the art for the identification of proteins from complex proteome samples in many laboratories. Both 2D liquid chromatography methods use two orthogonal liquid chromatography separation techniques. The most commonly used techniques are strong cation exchange chromatography for the first dimension and reversed phase separation for the second dimension. In order to improve sensitivity the reversed phase separation is usually performed in the nanoflow scale and mass spectrometry is used as the final detection method. The high-performance liquid chromatography techniques complement the 2D-gel techniques supporting their weaknesses. This is especially true for the gel separation of hydrophobic membrane proteins, which play an important role in living cells as well as being important targets for future pharmaceutical drugs.  相似文献   
62.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   
63.
Dried blood spots (DBS), a micro blood sampling technique, has recently gained interest in drug discovery and development due to its inherent advantages over the conventional whole blood, plasma or serum sample collection. Since the regulatory authorities have agreed to the use of blood as an acceptable biological matrix for drug exposure measurements, its applications have been extended not only to therapeutic drug monitoring but also to toxicokinetic and pharmacokinetic studies. The pharmaceutical industry is keen to promote DBS as a prominent tool in bioanalytical applications due to the financial, ethical and organizational issues involved in clinical trials. This could be accomplished due to the latest advances in modern analytical technology, particularly liquid chromatography–mass spectrometry. The present review discusses some of the emerging liquid chromatography–mass spectrometry technologies in improving DBS analysis for its innovative applications in the development of new drugs.  相似文献   
64.
The liquid chromatography‐mass spectrometry (LC‐MS) following on from the two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE) technique was applied for the analysis of proteins in a renal stone found in a hyperuricemic patient. This technique was sensitive enough to detect small quantities of proteins even in a renal stone.  相似文献   
65.
The efficiency of Mycophenolate mofetil (MMF) and Azathioprine (AZA) as immunosuppressive agents depends on the activity of 2 enzymes, inosine monophosphate dehydrogenase (IMPDH) and thiopurine methyltransferase (TPMT) respectively. We present preliminary evaluation of nonradioactive methods that apply HPLC with ion-trap mass detection to measure the activities of IMPDH in peripheral blood mononuclear cells (PBMC) and TPMT in the erythrocytes (RBC). We found IMPDH activity of 0.9 ± 0.2 nmol/hour/106 PBMC and TPMT activity of 19.9 ± 4.7 nmol/hour/ml RBC in healthy subjects. These methods, following its further validation, could be useful for monitoring the activity in a clinical and experimental setting.  相似文献   
66.
Forty-four patients (40 males) with a mean age of 58 years were included in this pilot study. Mean serum urate concentration in patients with and without the metabolic syndrome (MS) was 8.8 mg/dL and 8.1 mg/dL, respectively. Urinary uric acid excretion was 543 mg/day/1.73m2 in the former and 609 mg/day/1.73m2 in the latter. Uric acid to creatinine ratio was 0.37 mg/mg in patients with the MS and 0.42 mg/mg in those without the MS. Mean serum urate increased from 8.6 mg/dL in subjects with three or more MS components to 10.3 mg/dL in those with five MS components. Serum urate was markedly lower in patients with mild MS (9 patients, 8.6 mg/dL) as compared to severe MS (10 patients, 9.2 mg/dL). In contrast, urinary uric acid to creatinine ratio was 0.42 mg/mg in patients with gout and mild MS and 0.33 mg/mg in gout patients with severe MS. Uric acid underexcretion appears to be more severe in gout patients with the MS. This disturbance appears to be related to the severity of the MS.  相似文献   
67.
Quinoxaline derivatives (quinoxalines) comprise a class of drugs that have been widely used as animal antimicrobial agents and feed additives. Although the metabolism of quinoxaline drugs has been mostly studied using chicken liver microsomes, the biochemical mechanism of biotransformation of these chemicals in the chicken has yet to be characterized. In this study, using bacteria produced enzymes, we demonstrated that both CYP1A4 and CYP1A5 participate in the oxidative metabolism of quinoxalines. For CYP1A5, three hydroxylated metabolites of quinocetone were generated. In addition, CYP1A5 is able to hydroxylate carbadox. For CYP1A4, only one hydroxylated product of quinocetone on the phenyl ring was identified. Neither CYP1A5 nor CYP1A4 showed hydroxylation activity towards mequindox and cyadox. Our results suggest that CYP1A4 and CYP1A5 have different and somewhat overlapping substrate specificity in quinoxaline metabolism, and CYP1A5 represents a crucial enzyme in hydroxylation of both quinocetone and carbadox.  相似文献   
68.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
69.
《Biomarkers》2013,18(5):434-444
Damage to DNA by dopamine quinone and/or catechol estrogen quinones may play a significant role in the initiation of Parkinson’s disease (PD). Depurinating estrogen–DNA adducts are shed from cells and excreted in urine. The aim of this study was to discover whether higher levels of estrogen–DNA adducts are associated with PD. Forty estrogen metabolites, conjugates, and DNA adducts were analyzed in urine samples from 20 PD cases and 40 matched controls by using ultra performance liquid chromatography/tandem mass spectrometry. The levels of adducts in cases versus controls (P?<?0.005) suggest that unbalanced estrogen metabolism could play a causal role in the initiation of PD.  相似文献   
70.
Recent developments in combined separations with mass spectrometry for sensitive and high-throughput proteomic analyses are reviewed herein. These developments primarily involve high-efficiency (separation peak capacities of ~103) nanoscale liquid chromatography (flow rates extending down to approximately 20 nl/min at optimal liquid mobile-phase separation linear velocities through narrow packed capillaries) in combination with advanced mass spectrometry and in particular, high-sensitivity and high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Such approaches enable analysis of low nanogram level proteomic samples (i.e., nanoscale proteomics) with individual protein identification sensitivity at the low zeptomole level. The resultant protein measurement dynamic range can approach 106 for nanogram-sized proteomic samples, while more abundant proteins can be detected from subpicogram-sized (total) proteome samples. These qualities provide the foundation for proteomics studies of single or small populations of cells. The instrumental robustness required for automation and providing high-quality routine performance nanoscale proteomic analyses is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号