首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13262篇
  免费   930篇
  国内免费   423篇
  2023年   120篇
  2022年   185篇
  2021年   246篇
  2020年   276篇
  2019年   346篇
  2018年   430篇
  2017年   289篇
  2016年   310篇
  2015年   352篇
  2014年   624篇
  2013年   899篇
  2012年   477篇
  2011年   647篇
  2010年   558篇
  2009年   664篇
  2008年   689篇
  2007年   607篇
  2006年   633篇
  2005年   581篇
  2004年   544篇
  2003年   513篇
  2002年   456篇
  2001年   252篇
  2000年   230篇
  1999年   274篇
  1998年   312篇
  1997年   247篇
  1996年   201篇
  1995年   232篇
  1994年   232篇
  1993年   202篇
  1992年   195篇
  1991年   146篇
  1990年   154篇
  1989年   152篇
  1988年   136篇
  1987年   121篇
  1986年   107篇
  1985年   143篇
  1984年   172篇
  1983年   163篇
  1982年   165篇
  1981年   115篇
  1980年   67篇
  1979年   65篇
  1978年   38篇
  1977年   18篇
  1976年   11篇
  1975年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 900 毫秒
81.
Abstract: The nature of [3H]imipramine binding to human platelets was investigated. Desipramine and 5-hydroxytryptamine (5-HT) displaced the same amount of binding and the binding was sensitive to protease treatment. The nature of pharmacological inhibition of [3H]imipramine binding was investigated in saturation experiments. Increases in K d without changes in B max were noted with the addition of 5-HT, desipramine, norzimeldine, or 5-methoxytryptoline. Reductions in B max without alterations in K D were obtained when citalopram or clomipramine was added. It is concluded that the [3H]imipramine binding site in human platelets is of protein nature and that this binding site contains the substrate recognition site for 5-HT uptake. In addition, [3H]imipramine and other 5-HT uptake inhibitors have bonds to other parts of the 5-HT uptake carrier or to the surrounding lipid membrane. This additional binding outside the substrate recognition site is not one single site but most likely represents sites that are specific for the chemical structure of each uptake inhibitor, respectively.  相似文献   
82.
To understand better the mechanisms involved in the transduction of a calcium signal into an intracellular response via multiple calcium-modulated proteins, we have examined the calcium-modulated proteins, S100 and calmodulin, and their intracellular targets in rat C6 glioma cells. Subconfluent, confluent, and postconfluent C6 cells contain predominantly, if not exclusively, the S100 beta polypeptide. The level of S100 beta in C6 cells increases approximately 20-fold from subconfluency to postconfluency whereas the level of calmodulin increases only about two-fold. The subcellular distribution of S100 beta and calmodulin in mitotic cells is similar. However, the subcellular distribution of these proteins in interphase cells is different and appears to change with cell density. Gel overlay analysis demonstrated that the S100- and calmodulin-binding protein profiles are significantly different and that some of the binding proteins appear to change in intensity with cell density. These data demonstrate that S100 beta is the predominant S100 polypeptide in C6 cells and suggest that changes in S100 beta and S100 beta-binding proteins may be involved in regulating S100-mediated intracellular processes in C6 cells. Our studies also suggest that the levels of S100 and calmodulin may be differentially regulated in C6 cells.  相似文献   
83.
Melatonin Binding Sites   总被引:12,自引:2,他引:10  
The distribution and characterization of specific melatonin binding sites were studied using 125I-melatonin. Autoradiography revealed only three sites of specific melatonin binding in brain: the suprachiasmatic nuclei, the median eminence, and the small part of choroid plexus at the caudal end of the fourth ventricle. Two other sites were detected outside the CNS: the anterior pituitary and the retina. The specific binding of 125I-melatonin was saturable and reversible. The dissociation constant (KD) of the binding sites was 60 pM. The concentration of the binding sites (Bmax) in the median eminence was 26 fmol/mg protein, and in the pituitary 3 fmol/mg protein. Specificity of the binding sites was tested by displacement of 125I-melatonin. The order of potency--melatonin much less than N-acetyl-5-hydroxytryptamine less than 5-methoxytryptamine much less than 5-hydroxytryptamine = 3,4-dihydroxyphenylethylamine = noradrenaline--shows high specificity of the binding sites for melatonin.  相似文献   
84.
The kinetics of dissociation of [3H]methyl beta-carboline-3-carboxylate (beta-CCM) binding was studied in a synaptosomal membrane preparation of rat cerebral cortex. Dissociation was biphasic: a faster phase (10-30% contribution) was followed by a slower phase. Picrotoxin pretreatment at 22 degrees C enhanced the equilibrium binding of [3H]beta-CCM. The half-life of the slower phase of beta-CCM dissociation (t1/2II) was increased by 60 muM picrotoxin from 1.7 min to 3.3 min. The dissociation of [3H]beta-CCM was identical when initiated by an excess of either diazepam or beta-CCM. Quasi-equilibrium Scatchard analysis of [3H]beta-CCM binding was performed by a kinetic separation of the rapid and slow phases of dissociation. The slow and rapid phases represented beta-CCM binding sites of high and low affinity, respectively. The dissociation of [3H]beta-CCM (control t1/2II = 2.0 min) was decelerated by the gamma-aminobutyric acid (GABA) antagonist 3-alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (R 5135) (t1/2II = 2.5 min) and accelerated by GABA (t1/2II = 1.6 min). GABA inhibited both high- and low-affinity beta-CCM bindings.  相似文献   
85.
The role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) in modulating the agonist binding to bovine striatal dopamine D2 receptor was investigated using a selective high-affinity agonist, n-propylnorapomorphine (NPA). PLG caused an enhancement in [3H]NPA binding in striatal membranes in a dose-dependent manner, the maximum effect being observed at 10(-7)-10(-6) M concentration of the tripeptide. The Scatchard analysis of [3H]NPA binding to membranes preincubated with 10(-6) M PLG revealed a significant increase in the affinity of the agonist binding sites. In contrast, there was no effect of PLG on the binding pattern of the antagonist [3H]spiroperidol. The antagonist versus agonist competition curves analyzed for agonist high- and low-affinity states of the receptor displayed an increase in the population and affinity of the high-affinity form of the receptor with PLG treatment. The low-affinity sites concomitantly decreased with relatively small change in the affinity for the agonists. Almost similar results were obtained when either NPA or apomorphine was used in the competition experiments. A partial antagonistic effect of PLG on 5'-guanylylimidodiphosphate [Gpp(NH)p]-induced inhibition of high-affinity agonist binding was also observed, as the ratio of high- to low-affinity forms of the receptor was significantly higher in the PLG-treated membranes compared to the controls. Direct [3H]NPA binding experiments demonstrated that PLG attenuated the Gpp(NH)p-induced inhibition of agonist binding by increasing the EC50 of the nucleotide (concentration that inhibits 50% of the specific binding). No effect of PLG on high-affinity [3H]NPA binding, however, could be observed when the striatal membranes were preincubated with Gpp(NH)p.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
86.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings.  相似文献   
87.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   
88.
Deoxyhypusine hydroxylase catalyzes the formation of hypusine from deoxyhypusine in a precursor form of eukaryotic initiation factor 4D (eIF-4D). The enzymatic activity was examined in mammalian brain homogenates and the results were consistent with the existence of deoxyhypusine hydroxylase levels comparable to those occurring in other mammalian tissues. Interspecies differences in the enzyme distribution were quite limited, with the highest specific activity values observed in cow brain (1.82 units/ mg of protein). In the rat the enzyme was found to be unevenly distributed among various brain regions. The parietal cortex contained the highest specific activity (2.1 units/mg of protein). Rat brain deoxyhypusine hydroxylase was mainly present in the postmicrosomal supernatant (81% of the total activity). The highest specific activity (3 units/mg of protein) was observed in the rat brain during the first few days of life. Thereafter the activity started to decline, and continued to do so for 15 days, remaining throughout the rest of life at levels of less than one-half that of newborn.  相似文献   
89.
Summary The involvement of GATC sites in directing mismatch correction for the elimination of replication errors in Escherichia coli was investigated in vivo by analyzing mutation rates for a gene carried on a series of related plasmids that contain 2, 1 and 0 such sites. This gene encoding chloramphenicol acetyl transferase (Cat protein) was inactivated by a point mutation. In vivo mutations restoring resistance to chloramphenicol were scored in mismatch repair proficient (mut +) and deficient (mutHLS-) strains. In mut + cells, reduction of GATC sites from 2 to 0 increased mutation rates approximately 10-fold. Removal of the GATC site distal to the cat - mutation increased the rate of mutation less than 2-fold, indicating that mismatch repair can proceed normally with a single site. The mutation rate increased 3-fold after removal of the GATC site proximal to the mutation. In the absence of a GATC site, mutL- and mutS- strains exhibited a 2- to 3-fold increased mutation rate as compared to isogenic mutH- and mut + strains. This indicates that 50%–70% of replication errors can be corrected in a mutLS-dependent way in the absence of any GATC site to target mismatch correction to newly synthesized DNA strands. Other strand targeting signals, possibly single strand discontinuities, might be used in mutLS-dependent repair  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号