首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3276篇
  免费   464篇
  国内免费   59篇
  2024年   10篇
  2023年   82篇
  2022年   106篇
  2021年   135篇
  2020年   110篇
  2019年   148篇
  2018年   125篇
  2017年   114篇
  2016年   140篇
  2015年   144篇
  2014年   191篇
  2013年   285篇
  2012年   124篇
  2011年   120篇
  2010年   103篇
  2009年   111篇
  2008年   118篇
  2007年   142篇
  2006年   108篇
  2005年   87篇
  2004年   111篇
  2003年   98篇
  2002年   92篇
  2001年   68篇
  2000年   56篇
  1999年   54篇
  1998年   66篇
  1997年   65篇
  1996年   76篇
  1995年   41篇
  1994年   32篇
  1993年   46篇
  1992年   50篇
  1991年   42篇
  1990年   49篇
  1989年   42篇
  1988年   33篇
  1987年   30篇
  1986年   20篇
  1985年   39篇
  1984年   28篇
  1983年   29篇
  1982年   37篇
  1981年   27篇
  1980年   15篇
  1979年   11篇
  1978年   7篇
  1977年   11篇
  1976年   5篇
  1974年   5篇
排序方式: 共有3799条查询结果,搜索用时 31 毫秒
51.
The effect of chronic administration of -guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1–1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 ± 5.3 moles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for heart function and for the regulation of normal growth of cardiac myocytes.  相似文献   
52.
Recent investigations concentrate on the correlation between the myocardial expression of the inducible 70-kDa heat shock protein (HSP70i) by different stress conditions and its possible protective effects. Only few studies have focused on the involvement of small heat shock proteins in this process. We analyzed the location of the small heat shock protein HSP25 in isolated cardiomyocytes as well as its location and induction in isolated perfused hearts of rats. By immunofluorescence microscopy HSP25 was found to colocalize with actin in the I-band of myofibrils in cardiomyocytes of isolated perfused hearts as well as in isolated neonatal and adult cardiomyocytes. Hyperthermic perfusion of isolated hearts for 45 min resulted in modulation of different parameters of heart function and in induction of HSP25 and HSP70i. Temperatures higher than 43°C (44–46°C) were lethal with respect to the contractile function of the hearts. Compared to control hearts perfused at 37°C, significant increases during hyperthermic perfusion at 42°C and 43°C were obtained for heart rate, contraction velocity and relaxation velocity. In response to hyperthermia at 43°C and after subsequent normothermic perfusion for 135 min at 37°C, left ventricular pressure, contraction velocity and relaxation velocity remained significantly elevated. However, heart rate returned to control values immediately after the period of heat treatment. HSP25 is constitutively expressed even in normothermic perfused hearts as shown by Western blotting. Hyperthermia increased the content of HSP25 only in the left ventricular tissue. In contrast, HSP70i was strongly induced in all analyzed parts of the myocardium (left ventricle, right ventricle, septum). Our findings suggest a differential regulation of HSP25 and HSP70i expression in response to hyperthermia in isolated perfused hearts. The constitutively expressed HSP25 seems to be located adjacent to the myofibrils which implies a specific role of this protein even under unstressed conditions for the contractile function of the myocardium.  相似文献   
53.
Lavanchy  N.  Grably  S.  Garnier  A.  Rossi  A. 《Molecular and cellular biochemistry》1996,160(1):273-282
The role played by glycogenolysis in the ischemic heart has been recently put into question because it is suspected that a slowing down of this process could be beneficial for the tolerance of the myocardium to ischemia. The role of the intracellular effectors that control the rate of glycogenolysis has therefore regained interest. We aimed to understand the role played by those intracellular effectors which are directly related to the energy balance of the heart. To this end, we review some of the previously published data on this subject and we present new data obtained from P-31 and C-13 NMR spectroscopic measurement on isolated rat heart. Two conditions of ischemia were studied: 15 min global no-flow and 25 min low-flow ischemia. The hearts were isolated either from control animals or from rats pre-treated with isoproterenol (5 mg.kg–1 b.w. i.p.) 1 h before the perfusion in order to C-13 label glycogen stores. Our main results are as follows: (1) the biochemically determined glycogenolysis rate during the early phase of ischemia (up to 10–15 min) was larger in no-flow ischemia than in low-flow conditions for both groups, (2) direct measurement of the glycogenolysis rate, as determined by C-13 NMR, after labelling of the glycogen pool in the hearts from isoproterenol-treated rats, confirms the estimations from the biochemical data, (3) glycogenolysis was slower in the hearts from pre-treated animals than in control hearts for both conditions of ischemia, (4) the total activity of glycogen phosphorylase (a + b) increased, by 50%, after 5 min no-flow ischemia, whereas it decreased by 42% after the same time of low-flow ischemia. However, the ratio phosphorylase a/a + b was not altered, whatever the conditions, (5) the concentration of inorganic phosphate (Pi) increased sharply during the first minutes of ischemia, to values above 8–10 mM, under all conditions studied. The rate of increase was larger during no-flow ischemia than during low-flow ischemia. The concentration of Pi was thereafter higher in controls than in the hearts from isoproterenol-treated animals.The calculated cytosolic concentration of free 5 AMP increased sharply at the onset of ischemia, reaching in a few minutes values above 30 M in controls and significantly lower values, around 15 M, in the hearts from isoproterenol-treated rats. (6) The hearts from isoproterenol-treated rats displayed a reduced intracellular acidosis, when compared to controls, under both conditions of ischemia.We conclude that the intracellular effectors, mainly free AMP, play an essential role in the control of glycogenolysis via allosteric control of phosphorylase b activity. The alteration in the concentration of free Pi, the substrate of both forms of phosphorylase, can also be considered as determinant in the control of the rate of glycogenolysis.The attenuation of ischemia-induced intracellular acidosis in the hearts from isoproterenol-treated rats could be a consequence of a reduced glycogenolytic rate and is likely to be related to a better resumption of the mechanical function on reperfusion.  相似文献   
54.
Endothelin (ET-1) is found at elevated concentrations in the plasma of patients with heart failure and in animal models of cardiomyopathy. The peptide is a potent positive inotropic agent, the effects of which are mediated by increases in cytosolic Ca2+ in cardiomyocytes. The object of this study was to investigate at the cellular level, the actions of ET-1 on contractile function and on Ca2+ currents in heart-failed ventricular myocardium. Male New Zealand White rabbits (8 wks) were treated with twice weekly injections of epirubicin (4 mg/kg/wk, n=7) or with saline (n=7) for 6 wks, followed by a washout period of 2 wks. Ventricular cardiomyocytes were isolated from rabbit hearts using Langendorff perfusion with collagenase; contractile function was examined using a video microscopy method, and L-type Ca2+ currents were recorded using a whole-cell patch-clamp technique. ET-1 produced a concentration-dependent increase in contractile response (% increase from basal value) to a maximum at 1 nM ET-1 of 69 ± 11% (mean ± S.D.) in control cardiomyocytes and 33 ± 6% in heart-failed cells. However, there was no significant change in the EC50 obtained with ET-1 for healthy (0.31 ± 0.1 nM) and for failed cardiomyocytes (0.24 ± 0.1 nM). The effects of ET-1 on L-type Ca2+ channels were similar with a peak amplitude at 1 nM ET-1 of –3.26 ± 0.8 in control cardiomyocytes and –3.32 ± 0.9 nA in heart-failed cells. The attenuation of the contractile response to ET-1 in heart-failed cells may reflect a desensitization of ET receptors as a consequence of elevated circulating levels of ET and was not reflected by alteration of transmembrane Ca2+ conductance. It is probable, therefore, that multiple signalling pathways are involved in the actions of ET on ventricular myocardium.Recipient of Servier Investigator Award  相似文献   
55.
The localization of the ai adrenoceptors (1-AR) in the heart tissues from rat and human and in the cultured heart cells from neonatal rats was studied by indirect immunofluorescence and postembedding electronmicroscopical immuno-gold technique. With antipeptide antibodies directed against the second extracellular loop of the human 1-AR (AS sequence 192–218), this receptor was found to be localized along the sarcolemma in both human and rat hearts. Similar localization sites were detected in cultivated rat neonatal cardiomyocytes. Beside the localization in cardiomyocytes, 1-AR were identified in endothelial cells of capillaries and smooth muscle cells of coronary vessels, in neuronal endings, in mast cells of cultivated heart cells but not, or in less amount in fibroblasts. Interestingly, in the right atrium of rat heart the localization of 1-AR was found to be near or on atrial natriuretic factor (ANF) granules, providing the basis for the -adrenergic influence on ANF release. The immunocytochemical studies further confirm and complete the findings known by using autoradiographic binding studies with specific ligands.  相似文献   
56.
TGR(mREN2)27 is a transgenic rat harboring the murine Ren-2 gene and exhibit fulminant hypertension and marked heart hypertrophy. In order to study the role of angiotensin II in the increase of cardiac mass, these animals were treated with anti-hypertensive and non-antihypertensive doses of the angiotensin II receptor AT1 antagonist Telmisartan for 9 weeks. All doses led to significant reductions of heart hypertrophy detected by the evaluation of the diameter of cardiac muscle bundles. We conclude from this study that cardiac hypertrophy in TGR(mREN2)27 is characterized by an increased volume of cardiomyocytes and an unchanged amount of fibrous tissue and that angiotensin II plays an important role in the mechanisms leading to this phenotype.  相似文献   
57.
The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is limited, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway, is very low. Two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio. Besides this rapid control mechanism, there is a long-term regulation which involves the synthesis of G-6-PD. The activity of G-6-PD was elevated in the rat heart during the development of cardiac hypertrophy due to constriction of the abdominal aorta and in the non-ischemic part of the rat heart subsequent to myocardial infarction. The catecholamines isoproterenol and norepinephrine stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. The isoproterenol-induced stimulation was cAMP-dependent and due to increased new synthesis of enzyme protein. The G-6-PD mRNA was elevated by norepinephrine. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-l-pyrophosphate (PRPP) was expanded. PRPP is an important precursor substrate for purine and pyrimidine nucleotide synthesis. The limiting step in the oxidative PPP, the G-6-PD reaction, can be bypassed with ribose. This leads to an elevation of the cardiac PRPP pool. The decline in ATP that is induced in many pathophysiological conditions was attenuated or even entirely prevented by i.v. infusion of ribose. In two in vivo rat models, the overloaded and catecholamine-stimulated heart and the infarcted heart, the normalization of the cardiac adenine nucleotide pool by ribose was accompanied by an improvement of global heart function. Combination of ribose with adenine or inosine in isoproterenol-treated rats was more effective to restore completely the cardiac ATP level within a short period of time than either intervention alone. (Mol Cell Biochem 160/161: 101–109, 1996)  相似文献   
58.
Although it is well-accepted that the phosphatidylinositol signalling transduction pathway, producing inositol-1,4,5-P3 (InsP3) and inositol-1,3,4,5-P4 (InsP4) as second messengers, functions in heart muscle, virtually nothing is known about the roles of the higher inositol polyphosphates such as inositolhexakisphosphate (InsP6). This study demonstrates that InSP6 has the ability to bind intracellularly, with different binding characteristics, to different myocardial membranes. Binding to purified sarcoplasmic reticulum (SR) membranes, purified sarcolemmal (SL) membranes as well as to viable mitochondria were characterized. Binding to all these membranes display high as well as low affinity binding sites, with differing affinities. Kd values of binding to SR were 32 and 383 nM, to SL 61 and 1312 nM, while those of mitochondrial binding were 230 and 2200 nM respectively.InsP4 binding was also investigated and displayed the following characteristics: to SR, one low affinity binding site (Kd = 203 nM) and to SL, a high as well as a low affinity binding site with Kd values of 41 and 2075 nM respectively. Presence of InsP3, the second messenger for SR calcium release, at concentrations of 1 nM, elevated the binding of InsP4 to SR and SL by a mean of 30% and 20% respectively.Fractionation of SR and SL membranes on sucrose density gradients, after solubilization with CHAPS, indicated that InsP6 bound to two separate protein peaks in both these membranes, while InsP4 bound to only one. In SR membranes, InsP4 bound preferentially to a protein separating at high sucrose density while it bound to a protein separating at low sucrose density in SL membranes.  相似文献   
59.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   
60.
Evidence is accumulating that 7-oxo-prostacyclin (7-oxo-PGI2) induces a delayed indirect anti-adrenergic and cytoprotective effect on the myocardium, the mechanism of which is still unclear. To demonstrate that a single application of 7-oxo-PGI2 (50 g/kg i.m.) 48 h prior to starting experiments attenuates the isoprenaline inducible inotropic response and accumulation of cAMP, isolated hearts of pretreated animals were perfused in the Langendorff mode with and without isoprenaline (1 to 100 nM). The late anti-adrenergic effect of the drug was manifested by a significant attenuation in the elevation of cAMP levels as well as in contractile force development. This effect was not due to changes in cAMP generation as there were identical 1-adrenoceptor densities and affinities (as calculated from [3H]-CGP binding studies), Gi and Gs protein patterns (as taken from Western blots) as well as adenylyl cyclase activity measurements in the hearts studied. The anti-adrenergic potency of 7-oxo-PGI2, however, was found to be related to a significant rise in cyclic nucleotide hydrolysis by phosphodiesterase (PDE). Using the fast-performance liquid chromatographic separation for PDE isoforms, a significant increase in the activity of PDE isoforms I and IV (260±28 vs 110±12 pmol cGMP/min x enzyme fraction and 77±11 vs 34±3 pmol cAMP/min x enzyme fraction, respectively) was found in the solubilized fraction of cardiac membranes in comparison to untreated controls; PDE IV activity was also increased in the cytosolic fraction (106±14 vs 65±6 pmol cAMP/min x enzyme fraction). The hypothesis that the delayed anti-adrenergic effect of 7-oxo-PGI2 is initiated by an induction and accelerated synthesis of PDE I and IV in the heart is underlined by the fact that cycloheximide suppresses completely both the rise in PDE activities and the anti-adrenergic effects studied. It is suggested that an inducible predominance of cAMP degradation over its generation may be of relevance in processes related to heart protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号