首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   10篇
  国内免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   10篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  2000年   7篇
  1999年   5篇
  1998年   6篇
  1997年   6篇
  1996年   3篇
  1995年   9篇
  1994年   7篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1982年   1篇
排序方式: 共有164条查询结果,搜索用时 187 毫秒
21.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of φKO2.  相似文献   
22.
Ixodes ricinus Linnaeus (Acari: Ixodidae) ticks are vectors of numerous infectious diseases in humans and animals. The allozyme variability of MDH and α-Gpdh was detected by native polyacrylamide gel electrophoresis in I. ricinus natural populations in three localities in Serbia. Four alleles of Mdh locus (MDH 1, MDH 2, MDH 3 and MDH X) and four alleles of α-Gpdh locus (VS, S, F and VF) were detected. Interpopulation differences in Mdh and α-Gpdh allele frequencies were statistically insignificant. Significant difference in α-Gpdh allele frequencies between males and females was recorded in the largest sample only. Differences in allele frequencies, detected between borreliae-infected and uninfected I. ricinus ticks, were close to the level of statistical significance, especially for α-Gpdh locus. Clear significant difference appeared in females when sexes were tested separatelly (P = 0.037). It is interesting that genotypes containing rarer alleles (MDH 1 and S) were infected in higher proportion in comparison to other genotypes. Our results point towards a possible role of Mdh and α-Gpdh loci in I. ricinus ticks in the determination of energy requirements for host seeking. Sex differences in α-Gpdh allele frequencies suggest that selective pressure, concerning efficiency of reserve materials utilisation, points to α-Gpdh rather than to Mdh locus.  相似文献   
23.
The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host-pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent-based fractionation of outer membrane proteins; (ii) a trypsin-based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin-labelled fraction using streptavidin. Proteins derived from the detergent-based fractionation were further sub-fractionated by heparin affinity chromatography since heparin-like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel-based liquid chromatography (LC)-MS/MS technique or by two-dimensional (2D)-LC-MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species.  相似文献   
24.
25.
The Lyme disease bacterium Borrelia burgdorferi has 7–11 periplasmic flagella (PF) that arise from the cell poles and extend toward the midcell as a flat-ribbon, which is distinct from other bacteria. FlhF, a signal recognition particle (SRP)-like GTPase, has been found to regulate the flagellar number and polarity; however, its role in B. burgdorferi remains unknown. B. burgdorferi has an FlhF homolog (BB0270). Structural and biochemical analyses show that BB0270 has a similar structure and enzymatic activity as its counterparts from other bacteria. Genetics and cryo-electron tomography studies reveal that deletion of BB0270 leads to mutant cells that have less PF (4 ± 2 PF per cell tip) and fail to form a flat-ribbon, indicative of a role of BB0270 in the control of PF number and configuration. Mechanistically, we demonstrate that BB0270 localizes at the cell poles and controls the number and position of PF via regulating the flagellar protein stability and the polar localization of the MS-ring protein FliF. Our study not only provides the detailed characterizations of BB0270 and its profound impacts on flagellar assembly, morphology and motility in B. burgdorferi, but also unveils mechanistic insights into how spirochetes control their unique flagellar patterns.  相似文献   
26.
One of the Borrelia burgdorferi virulence determinants, annotated as Lmp1, is a surface‐exposed, conserved, and potential multi‐domain protein involved in various functions in spirochete infectivity. Lmp1 contributes to host–pathogen interactions and evasion of host adaptive immunity by spirochetes. Here, we show that in diverse B. burgdorferi species, Lmp1 exists as distinct, region‐specific, and lower molecular mass polypeptides encompassing 1 or more domains, including independent N‐terminal and middle regions and a combined middle and C‐terminal region. These polypeptides originate from complex posttranslational maturation events, partly supported by a periplasmic serine protease termed as BbHtrA. Although spirochete persistence in mice is independently supported by domain‐specific Lmp1 polypeptides, transmission of B. burgdorferi from ticks to mammals requires essential contributions from both N‐terminal and middle regions. Interference with the functions of Lmp1 domains or their complex posttranslational maturation events may aid in development of novel therapeutic strategies to combat infection and transmission of pathogens.  相似文献   
27.
This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi‐ or B. bissettii‐infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky‐footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely‐spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak‐woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host‐targeted acaricides or oral vaccination against B. burgdorferi.  相似文献   
28.
Aim Ixodes scapularis is the most important vector of human tick‐borne pathogens in the United States, which include the agents of Lyme disease, human babesiosis and human anaplasmosis, among others. The density of host‐seeking I. scapularis nymphs is an important component of human risk for acquiring Borrelia burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and field sampling data to generate a predictive map of the density of host‐seeking I. scapularis nymphs that can be used by the public, physicians and public health agencies to assist with the diagnosis and reporting of disease, and to better target disease prevention and control efforts. Location Eastern United States of America. Methods We sampled host‐seeking I. scapularis nymphs in 304 locations uniformly distributed east of the 100th meridian between 2004 and 2006. Between May and September, 1000 m2 were drag sampled three to six times per site. We developed a zero‐inflated negative binomial model to predict the density of host‐seeking I. scapularis nymphs based on altitude, interpolated weather station and remotely sensed data. Results Variables that had the strongest relationship with nymphal density were altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest fragmentation and soil texture were not predictive. The best‐fit model identified two main foci – the north‐east and upper Midwest – and predicted the presence and absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82% specificity. Areas of concordance and discordance with previous studies were discussed. Areas with high predicted but low observed densities of host‐seeking nymphs were identified as potential expansion fronts. Main conclusions This model is unique in its extensive and unbiased field sampling effort, allowing for an accurate delineation of the density of host‐seeking I. scapularis nymphs, an important component of human risk of infection for B. burgdorferi and other I. scapularis‐borne pathogens.  相似文献   
29.
Antigenic diversity in pathogenic microbes can be a result of at least three different processes: diversifying selection by acquired immunity, host–pathogen coevolution and/or host specialization. Here, we investigate whether host specialization drives diversity at ospC (which encodes an immunodominant surface protein) in the tick‐transmitted bacterium Borrelia afzelii. We determined prevalence and infection intensity of ospC strains in naturally infected wild mammals (rodents and shrews) by 454 amplicon sequencing in combination with qPCR. Neither prevalence nor infection intensity of specific ospC strains varied in a species‐specific manner (i.e. there were no significant ospC × host species interactions). Rankings of ospC prevalences were strongly positively correlated across host species. Rankings of ospC infection intensities were correlated more weakly, but only in one case significantly < 1. ospC prevalences in the studied mammals were similar to those in ticks sampled at the study site, indicating that we did not miss any mammal species that are important hosts for specific ospC strains. Based on this, we conclude that there is at best limited host specialization in B. afzelii and that other processes are likely the main drivers of ospC diversity.  相似文献   
30.
Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high‐fat diet‐induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil‐ and macrophage‐based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi‐infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high‐fat diet, toll‐like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow‐derived macrophages from obese, B. burgdorferi‐infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号