首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   4篇
  国内免费   10篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   22篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   16篇
  2007年   21篇
  2006年   26篇
  2005年   27篇
  2004年   16篇
  2003年   17篇
  2002年   22篇
  2001年   20篇
  2000年   24篇
  1999年   25篇
  1998年   29篇
  1997年   41篇
  1996年   17篇
  1995年   24篇
  1994年   15篇
  1993年   19篇
  1992年   9篇
  1991年   14篇
  1990年   12篇
  1989年   13篇
  1988年   10篇
  1987年   13篇
  1986年   12篇
  1985年   9篇
  1984年   11篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
排序方式: 共有524条查询结果,搜索用时 31 毫秒
41.
A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis(+)12-oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato. In stems, young leaves and young flowers, AOC mRNA accumulates to a low level, contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g-1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue-specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue-specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink-source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin-mediated wound response of tomato.  相似文献   
42.
The effects of secondary plant compounds on different host races/strains of a herbivorous arthropod are not easy to interpret based on dose–response tests alone. This difficulty arises because the responses in a population to a given dose are dictated not only by genetic factors, but also by factors such as feeding history, age and plant. To discriminate between these possibilities different strains of a herbivorous mite (Tetranychus urticae Koch) were exposed to one relevant toxin from glandular hairs on tomato (the methyl ketone, 2-tridecanone) and these strains had a known feeding history on either or both of two host plants (tomato and cucumber). It was hypothesized that tomato is a relatively hostile host plant to spider mites partly due to methyl ketones from glandular hairs and that consequently there will be stronger selection on the tomato strains than on the cucumber strains. However, the expected differences between the tomato and cucumber strains did not show up; three spider mite strains collected from tomato and two strains collected from cucumber appeared to be equally susceptible to 2-tridecanone. This unexpected result cannot result from selection for resistance to 2-tridecanone, but it may be the consequence of cross-resistance to other ketones in cucumber or the bio-accumulation (i.e. metabolic load) of 2-tridecanone prior to the toxicity test. To test this hypothesis, one of the tomato strains was released on cucumber for different time intervals and one of the cucumber strains on tomato. It was found that the resistance of the tomato strain to 2-tridecanone increased 6 months after transfer to cucumber. This increased resistance cannot be the result of selection because 2-tridecanone is absent from cucumber. Hence, it may be due either to selection for resistance to another ketone in cucumber, possibly leading to cross-resistance, or to the absence of 2-tridecanone bioaccumulation on cucumber. Transfer of the cucumber strain from cucumber to tomato also increased the resistance to 2-tridecanone. As this was accompanied by high mortality directly after the transfer, selection for resistance may have played a role. Alternatively, the increased resistance may be due to induction of resistance to secondary plant compounds of tomato, including 2-tridecanone. In conclusion, experiments on host plant transfer show that the tomato strain and the cucumber strain are not equal in their resistance to 2-tridecanone.  相似文献   
43.
Yield of tomato is limited by many diseases including Tomato spotted wilt virus disease. This study was conducted in the field at Kenya Agriculture Research Institute Njoro, Kenya, in 2004 and 2006 to determine the effect of intercropping on disease development, thrips population and yield of tomato variety Cal J grown under four intercrop systems involving kale, onion, maize and sole tomato. The experimental design was a Randomised Complete Block Design (RCBD) replicated three times. Disease scores on tomato–maize differed significantly from tomato–kale and tomato–onion in both years of the study. Maize cropping system had a low significant thrips population from the other cropping systems. Tomato–maize intercrop produced the lowest fruit weights and marketable yield in 2004 and 2006, while yield of onion, kale and maize in intercrops were not significantly different from their monocrops. Land equivalent ratio was >1 in all the cropping systems.  相似文献   
44.
The inhibitory effects of aminooxyacetic acid (AOA) and cobalt chloride (CoCl2) on brassinosteroid (BR)-induced epinasty in tomato plants ( Lycopersicon esculentum Mill. cv. Heinz 1350) are evaluated. CoCl2 dramatically decreases petiole bending and ethylene production as the concentration increases from 50 to 200 μ M. The content of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petiole, instead of accumulating, is reduced and does not change over the concentration range tested. Inhibition of BR-induced epinasty by AOA results from inhibition of ACC synthesis. There are dramatic reductions in petiole bending, ethylene and ACC production as the concentration of AOA is increased from 50 to 200 μ M. Maximum inhibition occurs when the plants are pretreated with the inhibitors. The degree of inhibition increases as the length of pretreatment increases from 1 to 4 h. The response of BR-treated plants to AOA and CoCl2 is similar to the effect of auxin, indicating the integral relationship between BR and auxin.  相似文献   
45.
An isolate of the fungus Myrothecium verrucaria was evaluated for its biocontrol potential against common purslane, horse purslane, spotted spurge, and prostrate spurge, all serious weed pests in commercial tomato fields in the southeastern US. In greenhouse and field tests, M. verrucaria was highly virulent against these weeds when applied as conidial sprays formulated in 0.2% Silwet L-77 surfactant, even in the absence of dew. In field test plots naturally infested with these weeds, seedlings in the two-to-three leaf growth stage treated with M. verrucaria at 2×107 conidia mL-1 in 0.2% Silwet, exhibited leaf and stem necrosis within 24 h following inoculation, with mortality occurring within 96 h. After 7 days, M. verrucaria had killed 90-95% of both purslane species and 85-95% of both spurge species. Tomatoes that were transplanted into plots treated with M. verrucaria remained healthy and vigorous throughout the growing season. Since M. verrucaria effectively controlled several common weeds under field conditions, this fungus appears to have potential as an effective bioherbicide for pre-plant weed control in production systems with transplanted tomato.  相似文献   
46.
The ionic composition in the leaves of some glycophyte plants (Phaseolus vulgaris L., Lycopersicon esculentum L., and Amaranthus cruentus L.) was studied during leaf development. Plants were grown in a stationary hydroponic culture; a growth medium contained equimolar concentrations of inorganic ions (NO 3 ? , Cl?, SO 4 2? , H2PO 4 ? , K+, Ca2+, Mg2+, and Na+) equal to 5 mg-equiv./l for each ion. In the juvenile leaf, the main ions were K+ and water-soluble anions of organic acids represented mainly by di-and tricarboxylic acids in kidney bean and tomato and oxalic acid in amaranth. An increase in the total amount of organic anions, coinciding with the accumulation of bivalent cations, was registered in leaves of glycophytes during their development. Mature and senescing leaves of tomato and kidney bean accumulated mainly di-and tricarboxylic acid salts with the prevalence of Ca2+ ions. In amaranth leaves, the formation of water-insoluble (acid-soluble) oxalate pool containing Ca2+ ions (mature leaves) or Ca2+ and Mg2+ ions (senescing leaves) was registered. The priority role of the metabolism of organic acids in the formation of the ionic composition of glycophyte leaves during their development is discussed. It is supposed that the species-specific ionic composition of glycophyte leaves at different developmental stages is due mainly to the pattern of carbon metabolism causing the accumulation either of di-and tricarboxylic acids or oxalic acid.  相似文献   
47.
研究番茄品种‘辽园多丽’幼苗在昼间35℃亚高温条件下叶中糖含量及蔗糖代谢相关酶活性日变化的结果表明,昼间亚高温处理后的幼苗叶中果糖、葡萄糖和淀粉含量下降,蔗糖含量升高。与蔗糖代谢相关的酶活性有明显的昼夜节律性变化,转化酶、蔗糖合成酶呈现昼间活性低、夜间活性高的节律性,而蔗糖磷酸合成酶活性在进入夜间时立刻升高。35℃昼间亚高温处理后的幼苗叶中,转化酶活性下降,蔗糖合成酶活性明显升高,蔗糖磷酸合成酶活性则略有升高。  相似文献   
48.
Bertin N 《Annals of botany》2005,95(3):439-447
BACKGROUND AND AIMS: To better understand the regulation of fruit growth in response to environmental factors, the effects of temperature and plant fruit load on cell number, cell size and DNA endoreduplication were analysed. METHODS: Plants were grown at 20/20 degrees C, 25/25 degrees C and 25/20 degrees C day/night temperatures, and inflorescences were pruned to two ('2F') or five ('5F') flowers. KEY RESULTS AND CONCLUSIONS: Despite a lower fruit growth rate at 20/20 degrees C, temperature did not affect final fruit size because of the compensation between cell number and size. The higher cell number at 20/20 degrees C (9.0 x 10(6) against 7.9 x 10(6) at 25/25 degrees C and 7.7 x 10(6) at 25/20 degrees C) resulted from an extended period of cell division, and the smaller cell size was due to a shorter period of expansion rather than a lower expansion rate. By contrast, the lower fruit growth rate and size of 5F fruits compared with 2F fruits resulted from the slow down of cell expansion, whereas the number of cells was hardly affected in the proximal fruit. However, within the inflorescence the decreasing gradient of fruit size from proximal to distal fruits was due to a decrease in cell number with similar cell size. Fruit size variations within each treatment were always positively correlated to variations in cell number, but not in cell size. Negative correlations between cell size and cell number suggested that cells of tomato pericarp can be seen as a population of competing sinks. Mean ploidy was slightly delayed and reduced in 5F fruits compared with 2F fruits. It was highest at 25/25 degrees C and lowest at 25/20 degrees C. Treatments did not affect ploidy and cell size in similar ways, but within each treatment, positive correlations existed between mean ploidy and cell size, though significant only in the 2F-25/20 treatment.  相似文献   
49.
BACKGROUND AND AIMS: All plants synthesize pantothenate but its synthesis and regulation are not well understood. The aim of this work is to study the effect of exogenous supply of precursor compounds on pantothenate levels in leaves. METHODS: Precursor compounds were supplied in solution to excised leaves and the pantothenate content was measured using a microbial method. KEY RESULTS: Pantothenate levels in excised leaves of Limonium latifolium, tomato (Lycopersicon esculentum), bean (Phaseolus vulgaris) and grapefruit (Citrus x paradisi) were examined following an exogenous supply of the precursor compounds pantoyl lactone or beta-alanine. Significantly higher levels of extractable pantothenate were found when pantoyl lactone was supplied, but not when beta-alanine was supplied despite a measurable uptake of beta-alanine into the leaf. CONCLUSIONS: The results suggested that the pantoate supply may be rate-limiting or regulating pantothenate synthesis in leaves.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号