首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   1篇
  国内免费   4篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   17篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   8篇
  2008年   29篇
  2007年   30篇
  2006年   45篇
  2005年   39篇
  2004年   34篇
  2003年   31篇
  2002年   33篇
  2001年   42篇
  2000年   64篇
  1999年   38篇
  1998年   43篇
  1997年   58篇
  1996年   43篇
  1995年   48篇
  1994年   43篇
  1993年   45篇
  1992年   29篇
  1991年   43篇
  1990年   33篇
  1989年   28篇
  1988年   34篇
  1987年   23篇
  1986年   22篇
  1985年   20篇
  1984年   16篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
101.
研究番茄品种‘辽园多丽’幼苗在昼间35℃亚高温条件下叶中糖含量及蔗糖代谢相关酶活性日变化的结果表明,昼间亚高温处理后的幼苗叶中果糖、葡萄糖和淀粉含量下降,蔗糖含量升高。与蔗糖代谢相关的酶活性有明显的昼夜节律性变化,转化酶、蔗糖合成酶呈现昼间活性低、夜间活性高的节律性,而蔗糖磷酸合成酶活性在进入夜间时立刻升高。35℃昼间亚高温处理后的幼苗叶中,转化酶活性下降,蔗糖合成酶活性明显升高,蔗糖磷酸合成酶活性则略有升高。  相似文献   
102.
残留地膜对番茄幼苗形态和生理特性的影响   总被引:10,自引:0,他引:10  
采用盆栽试验的方法,研究了土壤中残留地膜对番茄(Lycopersicon esculentum L.)幼苗形态及生理特性的影响.结果表明,残留地膜使番茄幼苗的株高、茎粗、地上部和根系鲜重、根系活力及叶片氮代谢水平等降低;而且根系的IBA含量降低和ABA含量增加,抑制了根系的生长.同时地膜残留量越大,抑制的效果越显著.这...  相似文献   
103.
Bertin N 《Annals of botany》2005,95(3):439-447
BACKGROUND AND AIMS: To better understand the regulation of fruit growth in response to environmental factors, the effects of temperature and plant fruit load on cell number, cell size and DNA endoreduplication were analysed. METHODS: Plants were grown at 20/20 degrees C, 25/25 degrees C and 25/20 degrees C day/night temperatures, and inflorescences were pruned to two ('2F') or five ('5F') flowers. KEY RESULTS AND CONCLUSIONS: Despite a lower fruit growth rate at 20/20 degrees C, temperature did not affect final fruit size because of the compensation between cell number and size. The higher cell number at 20/20 degrees C (9.0 x 10(6) against 7.9 x 10(6) at 25/25 degrees C and 7.7 x 10(6) at 25/20 degrees C) resulted from an extended period of cell division, and the smaller cell size was due to a shorter period of expansion rather than a lower expansion rate. By contrast, the lower fruit growth rate and size of 5F fruits compared with 2F fruits resulted from the slow down of cell expansion, whereas the number of cells was hardly affected in the proximal fruit. However, within the inflorescence the decreasing gradient of fruit size from proximal to distal fruits was due to a decrease in cell number with similar cell size. Fruit size variations within each treatment were always positively correlated to variations in cell number, but not in cell size. Negative correlations between cell size and cell number suggested that cells of tomato pericarp can be seen as a population of competing sinks. Mean ploidy was slightly delayed and reduced in 5F fruits compared with 2F fruits. It was highest at 25/25 degrees C and lowest at 25/20 degrees C. Treatments did not affect ploidy and cell size in similar ways, but within each treatment, positive correlations existed between mean ploidy and cell size, though significant only in the 2F-25/20 treatment.  相似文献   
104.
BACKGROUND AND AIMS: All plants synthesize pantothenate but its synthesis and regulation are not well understood. The aim of this work is to study the effect of exogenous supply of precursor compounds on pantothenate levels in leaves. METHODS: Precursor compounds were supplied in solution to excised leaves and the pantothenate content was measured using a microbial method. KEY RESULTS: Pantothenate levels in excised leaves of Limonium latifolium, tomato (Lycopersicon esculentum), bean (Phaseolus vulgaris) and grapefruit (Citrus x paradisi) were examined following an exogenous supply of the precursor compounds pantoyl lactone or beta-alanine. Significantly higher levels of extractable pantothenate were found when pantoyl lactone was supplied, but not when beta-alanine was supplied despite a measurable uptake of beta-alanine into the leaf. CONCLUSIONS: The results suggested that the pantoate supply may be rate-limiting or regulating pantothenate synthesis in leaves.  相似文献   
105.
The enzyme NAD-dependent sorbitol dehydrogenase (SDH) is well characterized in the Rosaceae family of fruit trees, which synthesizes sorbitol as a translocatable photosynthate. Expressed sequence tags of SDH-like sequences have also been generated from various non-Rosaceae species that do not synthesize sorbitol as a primary photosynthetic product, but the physiological roles of the encoded proteins in non-Rosaceae plants are unknown. Therefore, we isolated an SDH-like cDNA (SDL) from tomato (Lycopersicon esculentum Mill.). Genomic Southern blot analysis suggested that SDL exists in the tomato genome as a single-copy gene. Northern blot analysis showed that SDL is ubiquitously expressed in tomato plants. Recombinant SDL protein was produced and purified for enzymatic characterization. SDL catalyzed the interconversion of sorbitol and fructose with NAD (H). SDL showed highest activity for sorbitol among the several substrates tested. SDL showed no activity with NADP+. Thus, SDL was identified as a SDH, although the Km values and substrate specificity of SDL were significantly different from those of SDH purified from the Japanese pear (Pyrus pyrifolia), a Rosaceae fruit tree. In addition, tomato was transformed with antisense SDL to evaluate the contribution of SDL to SDH activity in tomato. The transformation decreased SDH activity to approximately 50% on average. Taken together, these results provide molecular evidence of SDH in tomato, and SDL was renamed LeSDH.  相似文献   
106.
107.
The oxidative pentose phosphate pathway (OPPP) provides plants with important substrates for both primary and secondary metabolism via the oxidation of glucose-6-phosphate. The OPPP is also thought to generate large amounts of reducing power to drive various anabolic processes. In animals this major pathway is located within the cytoplasm of cells, but in plants its subcellular compartmentation is far from clear. Although several enzymes of the OPPP were demonstrated to have both cytosolic and plastidic counterparts, there is yet no evidence for a full set of functional enzymes in each compartment. We report here the isolation of two coding sequences from tomato (Lycopersicon esculentum L.) which encode phylogenetically distant sequences (ToTal1 and ToTal2) that putatively encode distinct plastidic TA isoforms. The kinetic characterization of ToTal1 revealed that, unlike other enzymes of the non-oxidative branch of the OPPP, ToTal1 does not follow a Michaelis-Menten mode of catalysis which has implications for its role in regulating carbon flux between primary and secondary metabolism. TA genes appear to be differentially regulated at the level of gene expression in plant tissues and in response to environmental factors which suggests that TA isoforms have a non-overlapping role for plant metabolism.  相似文献   
108.
The three-dimensional crystal structure of tomato (Lycopersicon esculentum) beta-mannanase 4a (LeMAN4a) has been determined to 1.5 A resolution. The enzyme adopts the (beta/alpha)(8) fold common to the members of glycohydrolase family GH5. The structure is comparable with those of the homologous Trichoderma reesei and Thermomonospora fusca beta-mannanases: There is a conserved three-stranded beta-sheet located near the N terminus that stacks against the central beta-barrel at the end opposite the active site. Three noncanonical beta-helices surround the active site. Similar helices are found in T. reesei but not T. fusca beta-mannanase. By analogy with other beta-mannanases, the catalytic acid/base residue is E204 and the nucleophile residue is E318. The active site cleft of L. esculentum beta-mannanase most closely resembles that of the T. reesei isozyme. A model of substrate binding in LeMAN4a is proposed in which the mannosyl residue occupying the -1 subsite of the enzyme adopts the (1)S(5) skew-boat conformation.  相似文献   
109.
The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.  相似文献   
110.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号