首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   243篇
  国内免费   16篇
  2024年   8篇
  2023年   26篇
  2022年   59篇
  2021年   101篇
  2020年   96篇
  2019年   73篇
  2018年   59篇
  2017年   62篇
  2016年   53篇
  2015年   92篇
  2014年   175篇
  2013年   148篇
  2012年   108篇
  2011年   118篇
  2010年   75篇
  2009年   60篇
  2008年   64篇
  2007年   75篇
  2006年   71篇
  2005年   39篇
  2004年   46篇
  2003年   42篇
  2002年   33篇
  2001年   10篇
  2000年   20篇
  1999年   15篇
  1998年   17篇
  1997年   24篇
  1996年   13篇
  1995年   13篇
  1994年   14篇
  1993年   17篇
  1992年   13篇
  1991年   9篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1971年   3篇
  1970年   3篇
排序方式: 共有1950条查询结果,搜索用时 15 毫秒
231.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   
232.
The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system’s parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.  相似文献   
233.
234.
Indirect double immunofluorescence labelling in the pharynx and lung of the bullfrog, Rana catesbeiana, demonstrated the occurrence, distribution, and coexistence of two neuropeptides. In the pharynx, immunoreactive calcitonin gene-related peptide (CGRP) and substance P (SP) were localized in nerve fibers distributed within and just beneath the ciliated epithelium. In the lung, CGRP and SP were localized in nerve fibers in five principal locations: 1) within the smooth muscle layer in the interfaveolar septa; 2) in the luminal thickened edges of the septa; 3) around the pulmonary vasculature; 4) within, and 5) under the ciliated epithelium. Within the smooth muscle layer in the septa, luminal thickened septa, and around blood vessels, almost all fibers showed coexistence of CGRP and SP. Within and just beneath the ciliated epithelium in the thickened septa, all fibers showed coexistence of CGRP and SP. No immunoreactivity for vasoactive intestinal polypeptide, neuropeptide Y, galanin, somatostatin, FMRFamide, and leucine-and methionine-enkephalins was detected in the nerve fibers within the larynx and the lung. Together with our previous data, the present findings suggest that peptidergic mechanisms are involved in the regulation of amphibian respiratory systems throughout their life.  相似文献   
235.
《Phytomedicine》2014,21(7):970-977
Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.  相似文献   
236.
The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer.  相似文献   
237.
Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD−/− mice. LCAD−/− mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD−/− mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD−/− surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD−/− lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.  相似文献   
238.
Q5 antigens are expressed on the surface of various experimental murine tumor cells. They share partially common antigenicity with Qa-2 alloantigens expressed on normal lymphocytes. For that reason we tested the immunoprotection by anti-Qa-2 immunization of mice against a Q5+ tumor. Nerve fibrosarcoma (NSFA) tumor, which specifically develops metastasis in the lung, has been reported to be poorly immunogenic. However, expression of the Q5 antigen was evident on the surface of NFSA cells. After immunizing (C3H/He x B6.K1)F1 (Qa-2-) mice with B6 (Qa-2+) lymphocytes, the protection against the proliferation of the semi-syngeneic NFSA tumor was examined First, immunization of normal mice induced resistance to NFSA cell transplants. Second, when the tumor cells were transplanted to the hind foot of a mouse and the resulting tumor was removed by amputating the leg, the mice were protected against the development of lung metastasis after immunization by intraperitoneal inoculation of B6 cells 3 days after tumor removal. Immunization with attenuated NFSA cells in this system failed to protect the mice from lung metastasis. On the other hand, inoculation of the mice with B6 cells without removal of the original tumor on the foot showed little effect on the progression of the tumor. Thus, cytotoxic T lymphocytes (CTL), which seemed to be present in an inactive form in the mice from which the tumor had not been removed, were induced in the mice after the removal of the major tumor followed by immunization with B6 lymphocytes. The induction of CTL by the immunization was suppressed in mice bearing large tumors. Cells stimulated by the tumor antigen seemed to be involved in the suppression. It was also shown that the Q5 antigen is the direct recognition target of the CTL since the activity of Q5-specific CTL clones in lysing tumor cells was inhibited by a monoclonal antibody specific for the Q5 antigen. In contrast to immunization with attenuated tumor cells, our novel allogeneic lymphocyte immunization procedure offers high CTL activation, by-passing the induction of T cell unresponsiveness.  相似文献   
239.

Background

Although the thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative properties, it is possible to reduce the first and enhance the second one by suitable chemical modifications.

Methods

Two oligonucleotides (TBA353 and TBA535) based on the TBA sequence (GGTTGGTGTGGTTGG) and containing inversion of polarity sites have been investigated by CD, UV and electrophoretic techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay), antiproliferative (MTT assay) and anti-motility (wound healing assay) properties against Calu-6 cells have been tested and compared with TBA.

Results

CD, UV and electrophoresis data indicate that both ODNs are able to form G-quadruplex structures. Particularly, results suggest that TBA535 adopts a G-quadruplex structure characterized by a loop arrangement different from that of TBA. Both TBA analogues drop the anticoagulant activity. However, TBA535 is endowed with a significant antiproliferative activity against lung cancer Calu-6 cells. Importantly, both TBA and TBA535 possess a remarkable anti-motility property against the same cell line.

Conclusions

Both TBA analogues TBA353 and TBA535 are able to form G-quadruplex structures with no anticoagulant activity. However only TBA535 is endowed with noteworthy antiproliferative and anti-motility properties against lung cancer Calu-6 cells.

General significance

The switching from the anticoagulant to antiproliferative property can be obtained also in TBA derivatives not adopting the “chair-like” G-quadruplex structure typical of TBA. Furthermore, results have highlighted an unprecedented anti-cell-motility property of TBA and TBA535 reinforcing the potential of these ODNs as anticancer drugs.  相似文献   
240.
PurposeTo investigate the dosimetric impact of hysteresis on lung cancer tomotherapy.MethodsMeasurements were acquired using MapCheck with an XY4D motion simulation table. Six hysteresis states (0, π/32, π/16, π/8, 3π/16, and π/4) were considered with sinusoidal motions in the superior–inferior and left–right orientations. The measured data were analyzed both globally (from all detectors) and structure-by-structure in the measurement plane. The dose difference (DD) analysis method with local normalization in the absolute dose mode with a DD threshold of 6 cGy was adopted to analyze each hysteresis vs. static state (H(1)S) and nonzero vs. zero hysteresis (H(1)0). The threshold was 10% for all analyses. Wilcoxon signed rank tests with significance level p = 0.05 were used for statistical analysis.ResultsThe DD analysis of each H(1)S mostly indicated that the passing rate differed between structures but was similar between hysteresis states. The DD analysis of H(1)0 showed that the passing rate decreased with increasing hysteresis. The differences between larger hysteresis (≥3π/16) and other states were significant for comparisons between global, left lung, chest wall, and target. Both analyses showed that the DD distribution changed with hysteresis.ConclusionsHysteresis difference causes the DD distribution to change. Structural difference had more impact than hysteresis state difference on hysteresis motion vs. static comparisons. Remarkable effects on nonzero vs. zero hysteresis comparisons were only seen for structures closely related to the target at large hysteresis. Small organs at risk that are close to the target need to be considered further.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号