首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   103篇
  国内免费   30篇
  977篇
  2024年   8篇
  2023年   33篇
  2022年   27篇
  2021年   36篇
  2020年   36篇
  2019年   46篇
  2018年   39篇
  2017年   46篇
  2016年   43篇
  2015年   41篇
  2014年   52篇
  2013年   60篇
  2012年   24篇
  2011年   45篇
  2010年   28篇
  2009年   49篇
  2008年   51篇
  2007年   52篇
  2006年   36篇
  2005年   38篇
  2004年   28篇
  2003年   22篇
  2002年   19篇
  2001年   15篇
  2000年   14篇
  1999年   11篇
  1998年   5篇
  1997年   13篇
  1996年   5篇
  1995年   11篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
排序方式: 共有977条查询结果,搜索用时 13 毫秒
71.
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials.Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc.The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9.Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.  相似文献   
72.
Chemiluminescence (CL) was observed when benzene vapour passed through the surface of Y2O3, TiO2, Y2O3–V2O5, TiO2–Y2O3, Y2O3–Cr2O3, Y2O3–Al2O3 and TiO2–Al2O3, with air as the carrier gas. The strongest CL intensity was found with Y2O3 as the catalyst. A novel benzene sensor based on this kind of CL was developed. Quantitative analysis was performed at the wavelength of 425 nm. Under optimal conditions, CL intensity was directly proportional to the concentration of benzene vapour. The linear range was 4–7018 mg/m3 (= 0.9981, = 11), with a detection limit of 1 mg/m3 (the signal:noise ratio was 3). This gas sensor can work continuously for >80 h and has been successfully applied to the real‐time determination of benzene vapour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
73.
In the contemporary era, when life habits are largely determined by social needs and individual preferences, sleep is nevertheless affected by seasonal environmental changes. Japan has large seasonal and geographical alterations of photoperiod and climate. Japan does not adopt the daylight saving time (DST) system, making it a suitable country for the study of seasonal variations in natural human sleep. The aim of this study was to analyze the seasonal changes in the sleep properties (timing and quality) and identify their relationship with environmental changes. Here, we report an analysis of objective sleep data of 691 161 nights collected from 1856 Japanese participants (age 20–79 years, male 91%, female 9%) for 3 years using contactless biomotion sensors. Sleep onset time did not show clear seasonal variation, but sleep offset time showed a seasonal change with a single latest peak in winter. Seasonal variation was larger during weekends than during weekdays. Sleep offset time well correlated with sunrise time but was different in spring and autumn even when the sunrise time was same, suggesting the role of temperature difference. Sleep quality, estimated by wake time after sleep onset and sleep efficiency, showed seasonal changes with the lowest trough around mid-summer. In conclusion, despite profound social influences, the timing and quality of sleep showed seasonal fluctuation indicating that they were influenced by climate factors even in the developed country.  相似文献   
74.
This study aimed to prepare a novel quartz crystal microbalance (QCM) sensor for the detection of pirimicarb. Pirimicarb‐imprinted poly (ethylene glycol dimethacrylate‐N‐metacryloyl‐(l )‐tryptophan methyl ester) [p (EGDMA‐MATrp)] nanofilm (MIP) on the gold surface of a QCM chip was synthesized using the molecular imprinting technique. A nonimprinted p (EGDMA‐MATrp) nanofilm (NIP) was also synthesized using the same experimental technique. The MIP and NIP nanofilms were characterized via Fourier transform infrared spectroscopy attenuated total reflectance spectroscopy, contact angle, atomic force microscopy, and an ellipsometer. A competitive adsorption experiment on the sensor was performed to display the selectivity of the nanofilm. An analysis of the QCM sensor showed that the MIP nanofilm exhibited high sensitivity and selectivity for pirimicarb determination. A liquid chromatography‐tandem mass spectrometry method was prepared and validated to determine the accuracy and precision of the QCM sensor. The accuracy and precision of both methods were determined by a comparison of six replicates at three different concentrations to tomato samples extracted by using a Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method. The limit of detection of the QCM sensor was found to be 0.028 nM. In conclusion, the QCM sensor showed good accuracy, with recovery percentages between 91 and 94%. Also, the pirimicarb‐imprinted QCM sensor exhibited a fast response time, reusability, high selectivity and sensitivity, and a low limit of detection. Therefore, it offers a serious alternative to the traditional analytical methods for pesticide detection in both natural sources and aqueous solutions.  相似文献   
75.
76.
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.  相似文献   
77.
Two multimode Hg(II) sensors, L‐MethBQA and L‐CysBQA, were obtained by fusing methionine or S‐methyl cysteine, into a bis‐quinolyl amine‐based chiral podand scaffold. Quinolyl groups serve as the fluorophore and possess nitrogen lone pairs capable of chelating metal ions. On exposure to Hg2+ or Zn2+, these sensors show signal enhancement in fluorescence. However, Cu2+ quenches their fluorescence in 30:70 acetontrile/water. L‐CysBQA complexes with Hg2+, producing an exciton‐coupled circular dichroism spectrum with the opposite sign to the one that is produced by Cu2+ or Zn2+ complexation. L‐CysBQA binds Hg2+ more strongly than Zn2+ and is shown to differentiate Hg2+ from other metal ions, such as Zn2+, Cu2+, Ni2+, and Pb2+, exceptionally well. The synergistic use of relatively soft sulfur, quinoline‐based chiral ligands and chiroptically enhanced fluorescence detection results in high sensitivity and selectivity for Hg2+. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
78.
A highly sensitive electrochemical glucose sensor has been developed by the co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto a gold electrode modified with biocompatible cyclic bisureas–gold nanoparticle conjugate (CBU–AuNP). A self-assembled monolayer of mercaptopropionic acid (MPA) and CBU–AuNP was formed on the gold electrode through a layer-by-layer assembly. This modified electrode was used for immobilization of the enzymes GOx and HRP. Both the HRP and GOx retained their catalytic activity for an extended time, as indicated by the low value of Michaelis–Menten constant. Analytical performance of the sensor was examined in terms of sensitivity, selectivity, reproducibility, lower detection limit, and stability. The developed sensor surface exhibited a limit of detection of 100 nM with a linear range of 100 nM to 1 mM. A high sensitivity of 217.5 μA mM−1 cm−2 at a low potential of −0.3 V was obtained in this sensor design. Various kinetic parameters were calculated. The sensor was examined for its practical clinical application by estimating glucose in human blood sample.  相似文献   
79.
Calbindin-D(28K) is suggested to play a postsynaptic role in neurotransmission and in the regulation of the intracellular Ca(2+) concentration. However, it is still unclear whether calbindin-D(28K) has a role in the regulation of exocytosis, either as Ca(2+) buffer or as Ca(2+) sensor. Amperometric recordings of catecholamine exocytosis from wild-type and calbindin-D(28K) knockout mouse chromaffin cells reveal a strong reduction in the number of released vesicles, as well as in the amount of neurotransmitter released per fusion event in knockout cells. However, Ca(2+) current recordings and Ca(2+) imaging experiments, including video-rate confocal laser scanning microscopy, revealed that the intracellular Ca(2+) dynamics are remarkably similar in wild-type and knockout cells. The combined results demonstrate that calbindin-D(28K) plays an important and dual role in exocytosis, affecting both release frequency and quantal size, apparently without strong effects on intracellular Ca(2+) dynamics. Consequently, the possibility that calbindin-D(28K) functions not only as a Ca(2+) buffer but also as a modulator of vesicular catecholamine release is discussed.  相似文献   
80.
An efficient monitoring and control strategy is the basis for a reliable production process. Conventional optical density (OD) measurements involve superpositions of light absorption and scattering, and the results are only given in arbitrary units. In contrast, photon density wave (PDW) spectroscopy is a dilution-free method that allows independent quantification of both effects with defined units. For the first time, PDW spectroscopy was evaluated as a novel optical process analytical technology tool for real-time monitoring of biomass formation in Escherichia coli high-cell-density fed-batch cultivations. Inline PDW measurements were compared to a commercially available inline turbidity probe and with offline measurements of OD and cell dry weight (CDW). An accurate correlation of the reduced PDW scattering coefficient µs′ with CDW was observed in the range of 5–69 g L−1 (R2 = 0.98). The growth rates calculated based on µs′ were comparable to the rates determined with all reference methods. Furthermore, quantification of the reduced PDW scattering coefficient µs′ as a function of the absorption coefficient µa allowed direct detection of unintended process trends caused by overfeeding and subsequent acetate accumulation. Inline PDW spectroscopy can contribute to more robust bioprocess monitoring and consequently improved process performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号