首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10597篇
  免费   485篇
  国内免费   565篇
  2024年   17篇
  2023年   121篇
  2022年   150篇
  2021年   196篇
  2020年   209篇
  2019年   254篇
  2018年   237篇
  2017年   169篇
  2016年   215篇
  2015年   249篇
  2014年   348篇
  2013年   679篇
  2012年   271篇
  2011年   340篇
  2010年   275篇
  2009年   415篇
  2008年   384篇
  2007年   435篇
  2006年   427篇
  2005年   446篇
  2004年   389篇
  2003年   388篇
  2002年   387篇
  2001年   283篇
  2000年   245篇
  1999年   259篇
  1998年   248篇
  1997年   239篇
  1996年   248篇
  1995年   238篇
  1994年   228篇
  1993年   265篇
  1992年   228篇
  1991年   244篇
  1990年   200篇
  1989年   185篇
  1988年   157篇
  1987年   180篇
  1986年   151篇
  1985年   171篇
  1984年   179篇
  1983年   100篇
  1982年   155篇
  1981年   126篇
  1980年   101篇
  1979年   81篇
  1978年   39篇
  1977年   33篇
  1976年   34篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
991.
992.

Background

Plant and animal ferritins stem from a common ancestor, but plant ferritins exhibit various features that are different from those of animal ferritins. Phytoferritin is observed in plastids (e.g., chloroplasts in leaves, amyloplasts in tubers and seeds), whereas animal ferritin is largely found in the cytoplasm. The main difference in structure between plant and animal ferritins is the two specific domains (TP and EP) at the N-terminal sequence of phytoferritin, which endow phytoferritin with specific iron chemistry. As a member of the nonheme iron group of dietary iron sources, phytoferritin consists of 24 subunits that assemble into a spherical shell storing up to ∼ 2000 Fe3 + in the form of an iron oxyhydroxide-phosphate mineral. This feature is distinct from small molecule nonheme iron existing in cereals, which has poor bioavailability.

Scope of review

This review focuses on the relationship between structure and function of phytoferritin and the recent progress in the use of phytoferritin as iron supplement.

Major conclusions

Phytoferritin, especially from legume seeds, represents a novel alternative dietary iron source.

General significance

An understanding of the chemistry and biology of phytoferritin, its interaction with iron, and its stability against gastric digestion is beneficial to design diets that will be used for treatment of global iron deficiency.  相似文献   
993.

Background

Most models for ferritin iron release are based on reduction and chelation of iron. However, newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions are facilitated by gated pores that regulate the opening and closing of the channels.

Scope of review

Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of anion import or export is not known but is a natural process because phosphate is a native component of the iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold channels was proposed and might explain how anions and chelators can penetrate the protein shell for binding or for direct chelation of iron.

Conclusions and general significance

These proposed mechanisms are used to evaluate three in vivo iron release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.  相似文献   
994.
Effects of low light intensity on growth and accumulation of secondary metabolites of a medicinal plant Glycyrrhiza uralensis Fisch. were investigated. Hydroponic-cultivated one year-old rhizome seedlings were grown under three low irradiances, 200, 100, and 50 μmol m−2 s−1 for 135 days. Control plants were cultured under natural light conditions. Low light intensity stress decreased leaf thickness, photosynthesis and biomass, but increased leaf area and chlorophyll concentrations. Low light intensity also significantly increased accumulation of glycyrrhizic acid and liquiritin in the root, while the maximum values of both secondary metabolites were obtained under an irradiance of 100 μmol m−2 s−1. Concentrations of both secondary metabolites were negatively correlated with root biomass. The results suggested that G. uralensis could endure an environment with low light intensity and suitable light control might increase the secondary metabolite contents within agroforestry systems.  相似文献   
995.

Background and Aims

Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions.

Methods

A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations.

Key Results

Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils.

Conclusions

Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.  相似文献   
996.
Allergen‐mediated cross‐linking of the high‐affinity receptor for IgE on mast cells triggers the release of diverse preformed and de novo synthesized immunoregulatory mediators that further the allergic response. A proteomic screen applied to the detection of proteins secreted by the model rat mast cell line, RBL‐2H3 (rat basophilic leukaemia, subline 2H3.1), led to the identification of the cholesterol‐binding glycoprotein, NPC2/RE1 (Niemann–Pick Type C2/epididymal secretory protein 1). Glycosylated NPC2 is secreted early in response to an IgE‐mediated stimulus and co‐localizes with the lysosomal membrane marker, CD63. NPC2 belongs to the ML (MD‐2‐related lipid‐recognition) protein family (155 members), which includes the Toll‐like receptor co‐factors, MD‐1 and MD‐2, and perhaps most interestingly, seven major house dust mite allergens of unknown function (including Der p 2 and Der f 2). Possible role(s) for the protein in the allergic response and future applications of this approach are discussed.  相似文献   
997.
BtuB is a β‐barrel membrane protein that facilitates transport of cobalamin (vitamin B12) from the extracellular medium across the outer membrane of Escherichia coli. It is thought that binding of B12 to BtuB alters the conformation of its periplasm‐exposed N‐terminal residues (the TonB box), which enables subsequent binding of a TonB protein and leads to eventual uptake of B12 into the cytoplasm. Structural studies determined the location of the B12 binding site at the top of the BtuB's β‐barrel, surrounded by extracellular loops. However, the structure of the loops was found to depend on the method used to obtain the protein crystals, which—among other factors—differed in calcium concentration. Experimentally, calcium concentration was found to modulate the binding of the B12 substrate to BtuB. In this study, we investigate the effect of calcium ions on the conformation of the extracellular loops of BtuB and their possible role in B12 binding. Using all‐atom molecular dynamics, we simulate conformational fluctuations of several X‐ray structures of BtuB in the presence and absence of calcium ions. These simulations demonstrate that calcium ions can stabilize the conformation of loops 3–4, 5–6, and 15–16, and thereby prevent occlusion of the binding site. Furthermore, binding of calcium ions to extracellular loops of BtuB was found to enhance correlated motions in the BtuB structure, which is expected to promote signal transduction. Finally, we characterize conformation dynamics of the TonB box in different X‐ray structures and find an interesting correlation between the stability of the TonB box structure and calcium binding. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
998.
The present in vitro studies report on iron uptake by Caco-2 cells from pepsin and pepsin + pancreatin-digested pork meat proteins at pH values between 4.6 and 7 mimicking conditions in the duodenum and the proximal jejunum, respectively. Heat treatment of the pork meat resulted in increased iron uptake from pepsin-digested samples to Caco-2 cells at pH 4.6. The major enhancing effects on iron uptake by Caco-2 cells were observed after pepsin digestion in the pH range 4.6–6.0, whereas the pepsin + pancreatin-digested samples resulted in negligible iron uptake in Caco-2 cells at pH 7. Thus, the results emphasize the importance of separating pepsin-digested and pepsin + pancreatin-digested proteins during in vitro studies on iron availability. Furthermore, the present results showed the pH dependency of iron uptake anticipated. The enhancing effect of ascorbic acid was verified by increased iron uptake from pepsin-digested pork meat samples at pH 4.6, while no effect of ascorbic acid was observed at pH 7 in pepsin + pancreatin-digested samples.  相似文献   
999.
Traditionally used methods of antibody affinity determination either by ELISA or by the surface plasmon resonance technique do not allow detection of the presence of low‐affinity antibodies in samples of high‐affinity antibodies. In this paper we demonstrate the possibility to reveal their presence and to determine the affinities of both categories of antibodies as well as the ratio of their concentrations. This is especially important since by using traditional methods for antibody affinity evaluation the admixture of low‐affinity antibodies in a sample diminishes the accuracy in determination of specific antibody affinity. In addition, the presence of an admixture of low‐affinity antibodies may be an important biological characteristic of the system under study; their revelation and the evaluation of their binding parameters may be valuable in many cases for obtaining a more complete characterization of the binding properties of the multiple antibodies generated in an immune response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
1000.
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of ~1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号