首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6403篇
  免费   612篇
  国内免费   262篇
  2024年   19篇
  2023年   181篇
  2022年   263篇
  2021年   393篇
  2020年   362篇
  2019年   588篇
  2018年   428篇
  2017年   240篇
  2016年   262篇
  2015年   397篇
  2014年   463篇
  2013年   598篇
  2012年   302篇
  2011年   352篇
  2010年   245篇
  2009年   322篇
  2008年   277篇
  2007年   280篇
  2006年   270篇
  2005年   209篇
  2004年   190篇
  2003年   164篇
  2002年   138篇
  2001年   84篇
  2000年   66篇
  1999年   49篇
  1998年   47篇
  1997年   27篇
  1996年   23篇
  1995年   12篇
  1994年   5篇
  1993年   9篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有7277条查询结果,搜索用时 31 毫秒
141.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.  相似文献   
142.
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.  相似文献   
143.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.  相似文献   
144.
Chloroplast development depends on the synthesis and import of a large number of nuclear-encoded pro- teins. The synthesis of some of these proteins is affected by the functional state of the plastid via a process known as retrograde signaling. Retrograde plastid-to-nucleus signaling has been often characterized in seedlings of Arabidopsis thaliana exposed to norflurazon (NF), an inhibitor of carotenoid biosynthesis. Results of this work suggested that, throughout seedling development, a factor is released from the plastid to the cytoplasm that indicates a perturbation of plastid homeostasis and represses nuclear genes required for normal chloroplast development. The identity of this factor is still under debate. Reactive oxygen species (ROS) were among the candidates discussed as possible retrograde signals in NF-treated plants. In the present work, this proposed role of ROS has been analyzed. In seedlings grown from the very beginning in the presence of NF, ROS-dependent signaling was not detectable, whereas, in seedlings first exposed to NF after light-dependent chloroplast formation had been completed, enhanced ROS production occurred and, among oth- ers, 1O2-mediated and EXECUTER-dependent retrograde signaling was induced. Hence, depending on the developmental stage at which plants are exposed to NF, different retrograde signaling pathways may be activated, some of which are also active in non-treated plants under light stress.  相似文献   
145.
PTMs are the ultimate elements that perfect the existence and the activity of proteins. Owing to PTM, not less than 500 millions biological activities arise from approximately 20 000 protein‐coding genes in human. Hundreds of PTM were characterized in living beings among which is a large variety of glycosylations. Many compounds have been developed to tentatively block each kind of glycosylation so as to study their biological functions but due to their complexity, many off‐target effects were reported. Insulin resistance exemplifies this problem. Several independent groups described that inhibiting the removal of O‐GlcNAc moieties using O‐(2‐acetamido‐2‐deoxy‐d‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), a nonselective inhibitor of the nuclear and cytoplasmic O‐GlcNAcase, induced insulin resistance both in vivo and ex vivo. The development of potent and highly selective O‐GlcNAcase inhibitors called into question that elevated O‐GlcNAcylation levels are responsible for insulin resistance; these compounds not recapitulating the insulin‐desensitizing effect of PUGNAc. To tackle this intriguing problem, a South Korean group recently combined ATP‐affinity chromatography and gel‐assisted digestion to identify proteins, differentially expressed upon treatment of 3T3‐L1 adipocytes with PUGNAc, involved in protein turnover and insulin signaling.  相似文献   
146.
147.
148.
149.
Cellular redox state is regulated by numerous components. The thiol-disulfide compound, glutathione, is considered to be one of the most significant, owing to its antioxidant power and potential influence over protein structure and function. While signaling roles for glutathione in plants have been suggested for several years, hard proof is scarce. Recently, through an approach based on genetic manipulation of glutathione in an oxidative stress background, we reported evidence that glutathione status is important to allow intracellular oxidation to activate pathogenesis-related phytohormone signaling pathways. This effect does not seem to be caused by changes in glutathione antioxidant capacity, and appears to be distinct to regulation through known players in pathogenesis responses, such as NPR1. Our data therefore suggest that new glutathione-dependent components that link oxidative stress to response outputs await discovery.  相似文献   
150.
Colorectal cancer (CRC) is one of the common malignant tumors worldwide. Both genetic and epigenetic changes are regarded as important factors of colorectal carcinogenesis. Loss of DACH1 expression was found in breast, prostate, and endometrial cancer. To analyze the regulation and function of DACH1 in CRC, 5 colorectal cancer cell lines, 8 cases of normal mucosa, 15 cases of polyps and 100 cases of primary CRC were employed in this study. In CRC cell lines, loss of DACH1 expression was correlated with promoter region hypermethylation, and re-expression of DACH1 was induced by 5-Aza-2'-deoxyazacytidine treatment. We found that DACH1 was frequently methylated in primary CRC and this methylation was associated with reduction in DACH1 expression. These results suggest that DACH1 expression is regulated by promoter region hypermethylation in CRC. DACH1 methylation was associated with late tumor stage, poor differentiation, and lymph node metastasis. Re-expression of DACH1 reduced TCF/LEF luciferase reporter activity and inhibited the expression of Wnt signaling downstream targets (c-Myc and cyclinD1). In xenografts of HCT116 cells in which DACH1 was re-expressed, tumor size was smaller than in controls. In addition, restoration of DACH1 expression induced G2/M phase arrest and sensitized HCT116 cells to docetaxel. DACH1 suppresses CRC growth by inhibiting Wnt signaling both in vitro and in vivo. Silencing of DACH1 expression caused resistance of CRC cells to docetaxel. In conclusion, DACH1 is frequently methylated in human CRC and methylation of DACH1 may serve as detective and prognostic marker in CRC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号