首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   49篇
  国内免费   21篇
  2024年   2篇
  2023年   17篇
  2022年   16篇
  2021年   15篇
  2020年   19篇
  2019年   25篇
  2018年   35篇
  2017年   28篇
  2016年   17篇
  2015年   17篇
  2014年   31篇
  2013年   17篇
  2012年   16篇
  2011年   13篇
  2010年   8篇
  2009年   15篇
  2008年   13篇
  2007年   15篇
  2006年   22篇
  2005年   12篇
  2004年   23篇
  2003年   14篇
  2002年   18篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有504条查询结果,搜索用时 15 毫秒
51.
Andreas Bick   《Zoologischer Anzeiger》2004,243(1-2):53-63
The fabriciin sabellid species, Fabricia nigra Langerhans, 1880 from the Macaronesian region, is assigned to the genus Pseudoaugeneriella Fitzhugh, 1998, based on information provided by newly collected specimens. The species is redescribed, including the variability of key characters. Moreover, structures of the anterior end — dorsal lips, ventral filamentous appendages, peristomial rings — of Pseudoaugeneriella nigra and other species of Fabriciinae are studied histologically and by means of SEM. The systematic significance of these characters in Fabriciinae is discussed.  相似文献   
52.
53.
54.
Tree rings and forest management in Europe   总被引:1,自引:0,他引:1  
Heinrich Spiecker   《Dendrochronologia》2002,20(1-2):191-202
  相似文献   
55.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.  相似文献   
56.
Above-average climate warming occurred during the 20th century in high altitude regions, and alpine treelines are believed to be an early indicator to respond to these warming-related changes. However, empirical investigations on treeline dynamics showed diverse results. The main objectives of this study are: (1) to investigate if treeline position shifted and if tree recruitment changed along with climate warming, and (2) to test if adult trees have “nursing effect” on tree establishment at treelines. We investigated two Balfour spruce (Picea balfouriana Rehd. et Wils.) treelines in Chang Niang (CNT) and Dang Dui (DDT), Dingqing county, Changdu prefecture, eastern Tibet. At each treeline site, three replicate plots with a size 30 m × 50 m were established. The coordinates of each tree within the plots were recorded and the age of each tree was identified by dendrochronological method. The changes in treeline position and tree recruitment were examined from spatially fine-scale distribution of trees and their age structure. The spatial patterns of individual trees were analyzed to infer the neighborhood effects. Results indicate that plots CNT2, CNT3, DDT1 and DDT2 showed stable treeline position during the last century, whereas plots CNT1 and DDT3 showed treeline advancing movement. Tree recruitments in all the six plots were enhanced during the 20th century, with two peaks occurring in the 1890–1910s and the 1950–1990s. Seedlings and saplings showed a general clustered distribution in all the six plots. The diverse pattern of treeline movement and episodic regeneration suggest that the treeline activity is not merely a result of climate change. “Nursing effects” from adult trees may play an important role in shaping the treeline activities on the eastern Tibetan Plateau. Our findings reveal diverse patterns in treeline dynamics at a local scale and highlight the importance of incorporating biotic interactions into species distribution modeling approaches.  相似文献   
57.
《Dendrochronologia》2014,32(3):220-229
Pointer year analysis, simple correlations, and response functions were combined in a dendroecological study to evaluate climate–growth relationships over the last century in two Abies alba Mill. and Fagus sylvatica L. mixed stands in Southern Italy mountainous areas. Analyses revealed species-specific attributes at the two study sites, i.e. Molise and Basilicata. Growth divergence between the two species emerged based on three primary climatic drivers, including drought stress and spring warmer temperatures during the current growing season for F. sylvatica, and water availability in the previous growing season for A. alba. However, despite the microclimatic differences between the two study sites, F. sylvatica showed similar climate–growth patterns, while differences were indicated for A. alba, due to its minor susceptibility to drought stress during the current growing season at the Basilicata site. Indeed, at the southernmost geographic limits of A. alba drought avoidance mechanisms were confirmed, consistent with traits considered diagnostic for the species in the Mediterranean region.  相似文献   
58.
Arctic shrubs have a strong potential for climate and environmental reconstructions in the chronically understudied regions of the high northern latitudes. The climate dynamics of these regions are important to understand because of large-scale feedbacks to the global climate system. However, little is known about other factors influencing shrub ring growth, possibly obscuring their climate signal. For example, as of yet we are not able to differentiate between herbivory or climatically induced growth depressions. Here, we use one of the most common Arctic shrubs, Alnus viridis as a test case to address this question. We sampled Alnus in Kobbefjord, Greenland, measured shrub-ring width and cell wall thickness and built site chronologies of each parameter. We analysed climate-growth relationships, tested their stability over time and employed a pointer-year analysis to detect growth depressions. We employed bootstrapped transfer function stability tests (BTFS) to assess the suitability of our shrub chronologies for climate reconstruction. Correlations with climate data showed strong significantly positive and stable correlations between summer temperature and ring-width with the exception of the recent decade. A climate reconstruction model failed stability tests, when the complete period of record was used for calibration and verification. Wood anatomy analysis uncovered the occurrence of unusual cell structure (very thin cell walls) in the exceptionally narrow ring of 2004, a recorded insect outbreak year in other parts of Greenland. When excluding the affected ring and a recovery period, the reconstruction model passed all tests, suggesting that the unusual 2004 ring was not climate driven, but rather the result of an insect attack. When combining anatomical analysis with traditional ring-width measurements, we move a step further in potentially distinguishing small rings caused by insect attacks from small rings formed in climatically challenging years. While this study does not provide unambiguous evidence, it does provide potential useful methodological combinations to enable more robust climate reconstructions in areas where climatic records are extremely sparse.  相似文献   
59.
Soil properties are thought to affect annual plant productivity in rangelands, and thus soil variables that are consistently correlated with plant biomass may be general indicators of rangeland health. Here we measured several soil properties (e.g. aggregate stability, organic carbon, total nitrogen) and tested each as a would-be predictor of local variation in peak aboveground grassland biomass. Individual properties explained a slight (≤10%) amount of variation in plant biomass. Plant biomass was mainly (negatively) associated with two soil properties, subsurface soil carbonate concentration and the stability of soil macroaggregates near the soil surface. Less important predictive variables included: elevation, plant community composition, surface soil organic carbon, and soil carbon:nitrogen. Plot-to-plot variation in plant biomass is seemingly difficult to predict based on soil properties, including popular indicators of soil and rangeland health and even root biomass. While protection of soil is critical to overall rangeland ecosystem function, our findings suggest that the relationship between soil properties and plant biomass in natural grasslands is complex. Thus, there may not be one or even several soil properties that consistently predict appreciable variation in peak grassland biomass, especially variation within an ecosystem independent of precipitation.  相似文献   
60.
杨绕琼  范泽鑫  李宗善  温庆忠 《生态学报》2018,38(24):8983-8991
云南松(Pinus yunnanensis)是重要的造林树种,在我国西南地区广泛分布。研究不同海拔云南松径向生长对气候变化的响应,有助于了解气候变化背景下云南松的敏感性和适应性。在滇西北丽江玉龙雪山不同海拔采集了云南松树木年轮样品,采用传统的树木年轮方法制作了不同海拔云南松树轮宽度标准化年表,并分析了不同海拔云南松径向生长与气候因子的相关性。结果表明:1)低海拔样点云南松具有较快的年平均生长速率。2)不同海拔云南松对气候因子的响应模式一致,树轮宽度与当年5—6月的降水量、帕尔默干旱指数(PDSI)和相对湿度呈正相关,与同期温度呈负相关。3)不同海拔的云南松径向生长对气象因子的响应程度不一样,即低海拔样点云南松树轮宽度与当年5月份的干旱指数、相对湿度、降水量相关系数较高;而高海拔样点的云南松树轮宽度与5—6月的降水、相对湿度、干旱指数的相关系数较低。研究表明春末夏初的水分条件是玉龙雪山云南松径向生长的主要限制因子,且低海拔地区云南松生长受水分限制更为严重,区域气候变暖和干旱化趋势可能对低海拔地区云南松的生长产生持续的负面效应。研究结果可为探讨气候变化下云南松的适宜分布区、以及云南松人工林的经营和可持续管理提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号