全文获取类型
收费全文 | 3938篇 |
免费 | 399篇 |
国内免费 | 494篇 |
专业分类
4831篇 |
出版年
2024年 | 35篇 |
2023年 | 183篇 |
2022年 | 197篇 |
2021年 | 342篇 |
2020年 | 248篇 |
2019年 | 321篇 |
2018年 | 213篇 |
2017年 | 194篇 |
2016年 | 172篇 |
2015年 | 197篇 |
2014年 | 276篇 |
2013年 | 307篇 |
2012年 | 182篇 |
2011年 | 211篇 |
2010年 | 174篇 |
2009年 | 245篇 |
2008年 | 252篇 |
2007年 | 211篇 |
2006年 | 155篇 |
2005年 | 124篇 |
2004年 | 112篇 |
2003年 | 80篇 |
2002年 | 69篇 |
2001年 | 63篇 |
2000年 | 29篇 |
1999年 | 32篇 |
1998年 | 38篇 |
1997年 | 27篇 |
1996年 | 19篇 |
1995年 | 24篇 |
1994年 | 21篇 |
1993年 | 17篇 |
1992年 | 16篇 |
1991年 | 8篇 |
1990年 | 6篇 |
1989年 | 1篇 |
1988年 | 3篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有4831条查询结果,搜索用时 15 毫秒
61.
Laurent VM Cañadas P Fodil R Planus E Asnacios A Wendling S Isabey D 《Acta biotheoretica》2002,50(4):331-356
The present study is an attempt to relate the multicomponent response of the cytoskeleton (CSK), evaluated in twisted living adherent cells, to the heterogeneity of the cytoskeletal structure - evaluated both experimentally by means of 3D reconstructions, and theoretically considering the predictions given by two tensegrity models composed of (four and six) compressive elements and (respectively 12 and 24) tensile elements. Using magnetic twisting cytometry in which beads are attached to integrin receptors linked to the actin CSK of living adherent epithelial cells, we specifically measured the elastic CSK response at quasi equilibrium state and partitioned this response in terms of cortical and cytosolic contributions with a two-component model (i.e., a series of two Voigt bodies). These two CSK components were found to be prestressed and exhibited a stress-hardening response which both characterize tensegrity behaviour with however significant differences: compared to the cytosolic component, the cortical cytoskeleton appears to be a faster responding component, being a less prestressed and easily deformable structure. The discrepancies in elastic behaviour between the cortical and cytosolic CSK components may be understood on the basis of prestress tensegrity model predictions, given that the length and number of constitutive actin elements are taken into account. 相似文献
62.
目的:在大鼠进行6周递增负荷运动的过程中,获得下丘脑弓状核乙酰胆碱(ACh)、多巴胺(DA)、去甲肾上腺素(NA)、肾上腺素(AD)阳性神经元表达的变化信息,观察其变化特征,探讨其变化规律及相互关系。方法:通过免疫组化技术测定ACh、DA、NA、AD的表达。结果:在一次负荷运动后即刻和恢复期,ACh变化不明显(P>0.05),DA运动后即刻变化不大,运动后3 h下降(P<0.05),NA变化表现不一(P>0.05),AD运动后明显升高且恢复期仍处于较高水平(P<0.05);在6周运动训练过程中,ACh有降低趋势但变化不明显(P>0.05),DA变化不明显(P>0.05),AD先增加而后逐渐回降(P<0.05),NA可能与AD的变化一致。结论:在一次负荷运动中,下丘脑弓状核ACh、NA、AD与运动应激HPA轴的兴奋有密切关系,AD是促进HPA轴兴奋的主要因素之一。在6周运动训练过程中,HPA应激轴的兴奋可能在运动适应初期由NA、AD,后期由ACh起主导作用。 相似文献
63.
Social organisms often show collective behaviors such as group foraging or movement.Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals.When social interactions change over time,collective behaviors may change because these behaviors emerge from interactions among individuals.Despite the importance of,and growing interest in,the temporal dynamics of social interactions,it is not clear how to quantify changes in interactions over time or measure their stability.Furthermore,the temporal scale at which we should observe changes in social networks to detect biologically meaningful changes is not always apparent.Here we use multilayer network analysis to quantify temporal dynamics of social networks of the social spider Stegodyphus dumicola and determine how these dynamics relate to individual and group behaviors.We found that social interactions changed over time at a constant rate.Variation in both network structure and the identity of a keystone individual was not related to the mean or variance of the collective prey attack speed.Individuals that maintained a large and stable number of connections,despite changes in network structure,were the boldest individuals in the group.Therefore,social interactions and boldness are linked across time,but group collective behavior is not influenced by the stability of the social network.Our work demonstrates that dynamic social networks can be modeled in a multilayer framework.This approach may reveal biologically important temporal changes to social structure in other systems. 相似文献
64.
James Patrick Cronin Blair E. Tirpak Leah L. Dale Virginia L. Robenski John M. Tirpak Bruce G. Marcot 《The Journal of wildlife management》2021,85(2):324-339
The Perdido Key beach mouse (Peromyscus polionotus trissyllepsis), Choctawhatchee beach mouse (P. p. allophrys), and St. Andrew beach mouse (P. p. peninsularis) are 3 federally endangered subspecies that inhabit coastal dunes of Alabama and Florida, USA. Conservation opportunities for these subspecies are limited and costly. Consequently, well-targeted efforts are required to achieve their downlisting criteria. To aid the development of targeted management scenarios that are designed to achieve downlisting criteria, we developed a Bayesian network model that uses habitat characteristics to predict the probability of beach mouse presence at a 30-m resolution across a portion of the Florida Panhandle. We then designed alternative management scenarios for a variety of habitat conditions for coastal dunes. Finally, we estimated how much area is needed to achieve the established downlisting criterion (i.e., habitat objective) and the amount of effort needed to achieve the habitat objective (i.e., management efficiency). The results suggest that after 7 years of post-storm recolonization, habitat objectives were met for Perdido Key (within its Florida critical habitat) and Choctawhatchee beach mice. The St. Andrew beach mouse required 5.14 km2 of additional critical habitat to be protected and occupied. The St. Andrew beach mouse habitat objective might be achieved by first restoring protected critical habitat to good dune conditions and then protecting or restoring the unprotected critical habitat with the highest predicted probability of beach mouse presence. This scenario provided a 28% increase in management efficiency compared to a scenario that randomly protected or restored undeveloped unprotected critical habitat. In total, when coupled with established downlisting criteria, these quantitative and spatial decision support tools could provide insight into how much habitat is available, how much more is needed, and targeted conservation or restoration efforts that might efficiently achieve habitat objectives. © 2020 The Wildlife Society. 相似文献
65.
Fredric M. Windsor Johan van den Hoogen Thomas W. Crowther Darren M. Evans 《Journal of Biogeography》2023,50(1):57-69
Ecological networks have classically been studied at site and landscape scales, yet recent efforts have been made to collate these data into global repositories. This offers an opportunity to integrate and upscale knowledge about ecological interactions from local to global scales to gain enhanced insights from the mechanistic information provided by these data. By drawing on existing research investigating patterns in ecological interactions at continental to global scales, we show how data on ecological networks, collected at appropriate scales, can be used to generate an improved understanding of many aspects of ecology and biogeography—for example, species distribution modelling, restoration ecology and conservation. We argue that by understanding the patterns in the structure and function of ecological networks across scales, it is possible to enhance our understanding of the natural world. 相似文献
66.
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological
relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS).
Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on
the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression
related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially
play a role in druginduced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify
causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression,
and resulting phenotypic variation. 相似文献
67.
David L. Remington P?ivi H. Leinonen Johanna Lepp?l? Outi Savolainen 《Genetics》2013,195(3):1087-1102
Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. 相似文献
68.
69.
《IRBM》2021,42(5):345-352
Available clinical methods for heart failure (HF) diagnosis are expensive and require a high-level of experts intervention. Recently, various machine learning models have been developed for the prediction of HF where most of them have an issue of over-fitting. Over-fitting occurs when machine learning based predictive models show better performance on the training data yet demonstrate a poor performance on the testing data and the other way around. Developing a machine learning model which is able to produce generalization capabilities (such that the model exhibits better performance on both the training and the testing data sets) could overall minimize the prediction errors. Hence, such prediction models could potentially be helpful to cardiologists for the effective diagnose of HF. This paper proposes a two-stage decision support system to overcome the over-fitting issue and to optimize the generalization factor. The first stage uses a mutual information based statistical model while the second stage uses a neural network. We applied our approach to the HF subset of publicly available Cleveland heart disease database. Our experimental results show that the proposed decision support system has optimized the generalization capabilities and has reduced the mean percent error (MPE) to 8.8% which is significantly less than the recently published studies. In addition, our model exhibits a 93.33% accuracy rate which is higher than twenty eight recently developed HF risk prediction models that achieved accuracy in the range of 57.85% to 92.31%. We can hope that our decision support system will be helpful to cardiologists if deployed in clinical setup. 相似文献
70.
ObjectivesAlzheimer's Disease (AD) is the most general type of dementia. In all leading countries, it is one of the primary reasons of death in senior citizens. Currently, it is diagnosed by calculating the MSME score and by the manual study of MRI Scan. Also, different machine learning methods are utilized for automatic diagnosis but existing has some limitations in terms of accuracy. So, main objective of this paper to include a preprocessing method before CNN model to increase the accuracy of classification.Materials and methodIn this paper, we present a deep learning-based approach for detection of Alzheimer's Disease from ADNI database of Alzheimer's disease patients, the dataset contains fMRI and PET images of Alzheimer's patients along with normal person's image. We have applied 3D to 2D conversion and resizing of images before applying VGG-16 architecture of Convolution neural network for feature extraction. Finally, for classification SVM, Linear Discriminate, K means clustering, and Decision tree classifiers are used.ResultsThe experimental result shows that the average accuracy of 99.95% is achieved for the classification of the fMRI dataset, while the average accuracy of 73.46% is achieved with the PET dataset. On comparing results on the basis of accuracy, specificity, sensitivity and on some other parameters we found that these results are better than existing methods.Conclusionsthis paper, suggested a unique way to increase the performance of CNN models by applying some preprocessing on image dataset before sending to CNN architecture for feature extraction. We applied this method on ADNI database and on comparing the accuracies with other similar approaches it shows better results. 相似文献