排序方式: 共有16条查询结果,搜索用时 0 毫秒
11.
Dhanasekaran M Albano CB Pellet L Karuppagounder SS Uthayathas S Suppiramaniam V Brown-Borg H Ebadi M 《Neurochemical research》2008,33(6):980-984
In the present study, we investigated the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on lipoamide dehydrogenase
activity and metallothionein content. Lipoamide dehydrogenase is a flavoprotein enzyme, which reduces lipoamide and low molecular
weight thiols. This enzyme has also been involved in the conversion of ubiquinone (coenzyme Q-10, oxidized form) to ubiquinol
(reduced form). Lipoamide dehydrogenase activity was measured spectrophotometrically following its incubation with different
doses of MPTP, MPP+, and divalent metals. MPTP at higher concentrations inhibited the lipoamide dehydrogenase activity, whereas it’s potent toxic
metabolite 1-methyl-4-phenylpyridinium (MPP+) had a similar effect at lower concentration. Calcium and copper did not affect the enzyme activity at any of the doses tested,
whereas, zinc dose dependently enhanced the lipoamide dehydrogenase activity. Additionally, levels of metallothionein in the
mouse nigrostriatal system were measured by cadmium affinity method following administration of MPTP. Metallothionein content
was significantly reduced in the substantia nigra (SN), and not in the nucleus caudatus putamen (NCP) following a single administration
of MPTP (30 mg/kg, i.p.). Our results suggests that both lipoamide dehydrogenase activity and metallothionein levels may be
critical for dopaminergic neuronal survival in Parkinson’s disease and provides further insights into the neurotoxic mechanisms
involved in MPTP-induced neurotoxicity. 相似文献
12.
Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5–6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before. 相似文献
13.
14.
The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms. 相似文献
15.
Fe(II)-and Co(II)-Fenton systems (FS) inactivated the lipoamide reductase activity but not the diaphorase activity of pig-heart lipoamide dehydrogenase (LADH). The Co(II) system was the more effective as LADH inhibitor. Phosphate ions enhanced the Fe(II)-FS activity. EDTA, DETAPAC, DL-histidine, DL-cysteine, glutathione, DL-dithiothreitol, DL-lipoamide, DL-thioctic acid, bathophenthroline, trypanothione and ATP, but not ADP or AMP, prevented LADH inactivation. Reduced disulfide compounds were more effective protectors than the parent compounds. Mg ions counteracted ATP protective action. Glutathione and DL-dithiothreitol partially restored the lipoamide dehydrogenase activity of the Fe(II)-FS-inhibited LADH. DL-histidine exerted a similar action on the Co(II)-FS-inhibited enzyme. Ethanol, mannitol and benzoate did not prevent LADH inactivation by the assayed Fenton systems and, accordingly, it is postulated that site-specific generated HO'radicals were responsible for LADH inactivation. With the Co(II)-FS, oxygen reactive species other than HO, might contribute to LADH inactivation. 相似文献
16.
Several denitrifying Pseudomonas strains contained an NADP+-specific 2-oxoglutarate dehydrogenase, in contrast to an NAD+-specific pyruvate dehydrogenase, if the cells were grown anaerobically with aromatic compounds. With non-aromatic substrates or after aerobic growth the coenzyme specificity of 2-oxoglutarate dehydrogenase changed to NAD+-specificity. The reaction stoichiometry and the apparent K
m-values of the enriched enzymes were determined: pyruvate 0.5 mM, coenzyme A 0.05 mM, NAD+ 0.25 mM; 2-oxoglutarate 0.6 mM, coenzyme A 0.05 mM, NADP+ 0.03 mM. Isocitrate dehydrogenase was NADP+-specific. The findings suggest that these strains contained at least two lipoamide dehydrogenases, one NAD+-specific, the other NADP+-specific. 相似文献