首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   11篇
  国内免费   7篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   5篇
  2019年   9篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   4篇
  2014年   4篇
  2013年   35篇
  2012年   3篇
  2011年   10篇
  2010年   6篇
  2009年   12篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
71.
Three novel lipase-producing microorganisms have been isolated from 526 actinomycete strains by employing screening techniques on solid media. Time-course and scale-up of enzyme production were analyzed. The lipases, produced by microorganisms belonging to the Streptomyces genus, were tested in several reactions in organic medium using unnatural substrates. The lyophilized crude lipases are stable at least for 1 month at 4°C (100% recovered activity). The lipase activity per milliliter of cell culture broth was higher than described in the literature for other lipases from actinomycetes. The three selected lipases displayed better activity than commercial lipase from Candida rugosa in the resolution of chiral secondary alcohols. The lipase from S. halstedii also displayed very good activity in the synthesis of carbamates.  相似文献   
72.
This study developed a simple, efficient method for producing racemic β-phenylalanine acid (BPA) and its derivatives via the enantioselective acylation catalyzed by the penicillin G acylase from Alcaligenes faecalis (Af-PGA). When the reaction was run at 25°C and pH 10 in an aqueous medium containing phenylacetamide and BPA in a molar ratio of 2:1, 8 U/mL enzyme and 0.1 M BPA, the maximum BPA conversion efficiency at 40 min only reached 36.1%, which, however, increased to 42.9% as the pH value and the molar ratio of phenylacetamide to BPA were elevated to 11 and 3:1, respectively. Under the relatively optimum reaction conditions, the maximum conversion efficiencies of BPA derivatives all reached about 50% in a relatively short reaction time (45–90 min). The enantiomeric excess value of product (eep ) and enantiomeric excess value of substrate (ees ) were all above 98% and 95%, respectively. These results suggest that the method established in this study is practical, effective, and environmentally benign and may be applied to industrial production of enantiomerically pure BPA and its derivatives.  相似文献   
73.
Abstract

The asymmetric acylation of (R, S)-3-n-butylphthalide could be efficiently catalyzed by Novozyme 435. The effect of various reaction parameters such as water activity, temperature, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide, and reaction time on the asymmetric acylation were studied. The optimums of the reaction parameters were water activity 0.62, temperature 30°C, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide 8:1, and reaction time 48 h, respectively. Under the optimum conditions, enantiopure 3-n-butylphthalide with an optical purity of 95.7% enantiomeric excess and 49.1% yield could be obtained. Furthermore, the enantiomeric excess of product was over 98%.  相似文献   
74.
Penicillin G acylases (PGAs) are robust industrial catalysts used for biotransformation of β-lactams into key intermediates for chemical production of semi-synthetic β-lactam antibiotics by hydrolysis of natural penicillins. They are used also in reverse, kinetically controlled synthetic reactions for large-scale productions of these antibiotics from corresponding beta-lactam nuclei and activated acyl donors. Further biocatalytic applications of PGAs have recently been described: catalysis of peptide syntheses and the resolutions of racemic mixtures for the production of enantiopure active pharmaceutical ingredients that are based on enantioselective acylation or chiral hydrolysis. Moreover, PGAs rank among promiscuous enzymes because they also catalyze reactions such as trans-esterification, Markovnikov addition or Henry reaction. This particular biocatalytic versatility represents a driving force for the discovery of novel members of this enzyme family and further research into the catalytic potential of PGAs. This review deals with biocatalytic applications exploiting enantioselectivity and promiscuity of prokaryotic PGAs that have been recently reported. Biocatalytic applications are discussed and presented with reaction substrates converted into active compounds useful for the pharmaceutical industry.  相似文献   
75.
Novel 3‐alkyl‐4,1‐benzoxazepine‐2,5‐diones were synthesized in good ee exploiting the chiral pool methodology, an economical way of asymmetric synthesis. Various anthranilic acids are coupled with different α‐haloacids to afford N‐acylated anthranilic acid intermediates which undergo cyclization to (3R)‐3‐alkyl‐4,1‐benzoxazepines‐2,5‐diones. Chirality 25:865–870, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
76.
For 4 decades, in vivo and in vitro studies have suggested that sulfoglycolipids (SGLs) play a role in the virulence or pathogenesis of the tubercle bacilli. However, the SGL structure and biosynthesis pathway remain only partially elucidated. Using the modern tools of structural analysis, including MALDI-time-of-flight MS, MS/MS, and two-dimensional NMR, we reevaluated the structure of the different SGL acyl (di-, tri-, and tetra-acylated) forms of the reference strain Mycobacterium tuberculosis H37Rv, as well as those produced by the mmpL8 knockout strains previously described to intracellularly accumulate di-acylated SGL. We report here the identification of new acyl forms: di-acylated SGL esterified by simple fatty acids only, as well as mono-acylated SGL bearing a hydroxyphthioceranoic acid, which were characterized in the wild-type strain. In a clinical strain, a complete family of mono-acylated SGLs was characterized in high abundance for the first time. For the mmpL8 mutant, SGLs were found to be esterified i) by an oxophthioceranoic acid, never observed so far, and ii) at nonconventional positions in the case of the unexpected tri-acylated forms. Our results further confirm the requirement of MmpL8 for the complete assembly of the tetra-acylated forms of SGL and also provide, by the discovery of new intermediates, insights in terms of the possible SGL biosynthetic pathways.  相似文献   
77.
The M-box riboswitch couples intracellular magnesium levels to expression of bacterial metal transport genes. Structural analyses on other riboswitch RNA classes, which typically respond to a small organic metabolite, have revealed that ligand recognition occurs through a combination of base-stacking, electrostatic, and hydrogen-bonding interactions. In contrast, the M-box RNA triggers a change in gene expression upon association with an undefined population of metals, rather than responding to only a single ligand. Prior biophysical experimentation suggested that divalent ions associate with the M-box RNA to promote a compacted tertiary conformation, resulting in sequestration of a short sequence tract otherwise required for downstream gene expression. Electrostatic shielding from loosely associated metals is undoubtedly an important influence during this metal-mediated compaction pathway. However, it is also likely that a subset of divalent ions specifically occupies cation binding sites and promotes proper positioning of functional groups for tertiary structure stabilization. To better elucidate the role of these metal binding sites, we resolved a manganese-chelated M-box RNA complex to 1.86 Å by X-ray crystallography. These data support the presence of at least eight well-ordered cation binding pockets, including several sites that had been predicted by biochemical studies but were not observed in prior structural analysis. Overall, these data support the presence of three metal-binding cores within the M-box RNA that facilitate a network of long-range interactions within the metal-bound, compacted conformation.  相似文献   
78.
Combined quantum mechanics and molecular mechanics (QM/MM) calculations were carried out to characterize the reaction mechanism of the NS3 protease with its preferred substrate (NS5A/5B). The main purpose of this study was to locate the barrier states and intermediates along the distinguished coordinate path (DCP) involved in this process. These structures, and in particular the one corresponding to the first barrier state and intermediate (B1 and I1), could be a starting point for the synthesis of inhibitors of this protease, which could be used to treat hepatitis C. The two first steps of the reaction mechanism were studied, i.e., the acylation step and the breaking of the peptide bond. The first step takes place through a tetracoordinated intermediate, as suggested from previous works on other Serine proteases. The importance of the different amino acid residues was also considered (perturbation study where the MM charges of each residue were set to zero independently). The residues of the oxyanion hole were confirmed as the most important for the electrostatic stabilization of the tetracoordinate intermediate. Moreover, the role of other residues, e.g., Arg-155 and Asp-79, was also explained.  相似文献   
79.
Natural tetrapeptide Goralatide inhibits primitive hematopoietic cell proliferation but reported to be rather unstable in solution (half‐life 4.5 min). In this work, we report the synthesis of an aminoxy analog of Goralatide. Aminoxy moiety is expected to provide increased stability and bioavailability of the Goralatide analog. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
80.
Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild‐type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine‐diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号