首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17045篇
  免费   764篇
  国内免费   615篇
  2024年   25篇
  2023年   337篇
  2022年   206篇
  2021年   313篇
  2020年   394篇
  2019年   624篇
  2018年   566篇
  2017年   492篇
  2016年   458篇
  2015年   548篇
  2014年   947篇
  2013年   1550篇
  2012年   889篇
  2011年   834篇
  2010年   620篇
  2009年   921篇
  2008年   961篇
  2007年   951篇
  2006年   747篇
  2005年   686篇
  2004年   566篇
  2003年   505篇
  2002年   398篇
  2001年   311篇
  2000年   346篇
  1999年   316篇
  1998年   354篇
  1997年   287篇
  1996年   311篇
  1995年   246篇
  1994年   199篇
  1993年   173篇
  1992年   149篇
  1991年   135篇
  1990年   123篇
  1989年   101篇
  1988年   90篇
  1987年   97篇
  1986年   60篇
  1985年   72篇
  1984年   75篇
  1983年   60篇
  1982年   83篇
  1981年   62篇
  1980年   51篇
  1979年   51篇
  1978年   34篇
  1977年   15篇
  1976年   19篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 937 毫秒
991.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   
992.
993.
Alts three-dimensional cell balance equation characterizing the chemotactic bacteria was analyzed under the presence of one-dimensional spatial chemoattractant gradients. Our work differs from that of others who have developed rather general models for chemotaxis in the use of a non-smooth anisotropic tumbling frequency function that responds biphasically to the combined temporal and spatial chemoattractant gradients. General three-dimensional expressions for the bacterial transport parameters were derived for chemotactic bacteria, followed by a perturbation analysis under the planar geometry. The bacterial random motility and chemotaxis were summarized by a motility tensor and a chemotactic velocity vector, respectively. The consequence of invoking the diffusion-approximation assumption and using intrinsic one-dimensional models with modified cellular swimming speeds was investigated by numerical simulations. Characterizing the bacterial random orientation after tumbles by a turn angle probability distribution function, we found that only the first-order angular moment of this turn angle probability distribution is important in influencing the bacterial long-term transport. Mathematics Subject Classification (2000):60G05, 60J60, 82A70  相似文献   
994.
Monsen KJ  Blouin MS 《Molecular ecology》2003,12(12):3275-3286
There is substantial debate over the criteria that should be used to group populations of a species into distinct units for conservation (e.g. evolutionarily significant units, management units, distinct population segments). However, in practice molecular genetic differentiation is often the only or main criterion used to identify such units. Most genetic studies attempting to define conservation units in animals use a single molecular marker, most often mitochondrial, and use samples from a limited number of populations throughout the species' range. Although there are many benefits to using mtDNA, certain features can cause it to show patterns of differentiation among populations that do not reflect the history of differentiation at the nuclear genome where loci controlling traits of adaptive significance presumably occur. Here we illustrate an example of such mitochondrial-nuclear discordance in a ranid frog, and show how using mtDNA or nuclear loci alone could have led to very different conservation recommendations. We also found very high genetic differentiation among populations on a local scale, and discuss the conservation implications of our results.  相似文献   
995.
Hardy OJ 《Molecular ecology》2003,12(6):1577-1588
A new estimator of the pairwise relatedness coefficient between individuals adapted to dominant genetic markers is developed. This estimator does not assume genotypes to be in Hardy-Weinberg proportions but requires a knowledge of the departure from these proportions (i.e. the inbreeding coefficient). Simulations show that the estimator provides accurate estimates, except for some particular types of individual pairs such as full-sibs, and performs better than a previously developed estimator. When comparing marker-based relatedness estimates with pedigree expectations, a new approach to account for the change of the reference population is developed and shown to perform satisfactorily. Simulations also illustrate that this new relatedness estimator can be used to characterize isolation by distance within populations, leading to essentially unbiased estimates of the neighbourhood size. In this context, the estimator appears fairly robust to moderate errors made on the assumed inbreeding coefficient. The analysis of real data sets suggests that dominant markers (random amplified polymorphic DNA, amplified fragment length polymorphism) may be as valuable as co-dominant markers (microsatellites) in studying microgeographic isolation-by-distance processes. It is argued that the estimators developed should find major applications, notably for conservation biology.  相似文献   
996.
We analysed levels of genetic differentiation between nine local urban colonies of stray cats using eight coat colour and nine microsatellite loci. Both types of markers revealed a strong differentiation between colonies (FST = 0.15 and 0.09 for coat colour and microsatellite loci, respectively). Three coat colour loci showed extreme levels of genetic differentiation comparatively to other loci and are strongly suspected to be under divergent selective pressures. Microsatellite loci showed significant heterozygote deficiency within colonies (FIS = 0.14), suggesting that coat colour loci are not appropriate to investigate genetic structure at a fine scale because coat colour allele frequencies are based on Hardy-Weinberg equilibrium. The reported pattern conformed to that predicted from the social structuring of cat colonies: aggressive exclusion of immigrants, inbreeding and very low dispersal rate.  相似文献   
997.
Here, we report a new computational method, called sheetminer, for mining beta-sheets in the density maps at intermediate resolutions of 6 to 10A. The method employs a multi-step ad hoc morphological analysis of density maps to identify the unique characteristics of beta-sheets. It was tested on density maps from 12 protein crystal structures that were artificially blurred to intermediate resolutions. There are a total of 35 independent beta-sheets with a wide distribution of morphology. The method successfully located 34 of them and missed only one. The method was also applied to an experimental 9A electron cryomicroscopic structure and an 8A X-ray density map. In both cases, the sheet-searching results were found to agree very well with known high-resolution crystal structures. Collectively, these results demonstrate clearly the robustness of sheetminer in locating the regions belonging to beta-sheets in the intermediate-resolution density maps. Furthermore, sheetminer is completely complementary to all other existing computational methods, including helixhunter and threading algorithms. Their combined usage has the potential to significantly enhance the computational modeling capacity for a much more complete interpretation of structural data at intermediate resolutions, from which extraction of functional information would be more effective. This is particularly important in the field of structural genomics, in which the fast screening approach may not always yield crystals that diffract to atomic resolution. An exciting future application of sheetminer is as a valuable tool for revealing the structures of amyloid fibrils that are rich in beta-motifs.  相似文献   
998.
The evolution of ligand specificity underlies many important problems in biology, from the appearance of drug resistant pathogens to the re-engineering of substrate specificity in enzymes. In studying biomolecules, however, the contributions of macromolecular sequence to binding specificity can be obscured by other selection pressures critical to bioactivity. Evolution of ligand specificity in vitro—unconstrained by confounding biological factors—is addressed here using variants of three flavin-binding RNA aptamers. Mutagenized pools based on the three aptamers were combined and allowed to compete during in vitro selection for GMP-binding activity. The sequences of the resulting selection isolates were diverse, even though most were derived from the same flavin-binding parent. Individual GMP aptamers differed from the parental flavin aptamers by 7 to 26 mutations (20 to 57% overall change). Acquisition of GMP recognition coincided with the loss of FAD (flavin-adenine dinucleotide) recognition in all isolates, despite the absence of a counter-selection to remove FAD-binding RNAs. To examine more precisely the proximity of these two activities within a defined sequence space, the complete set of all intermediate sequences between an FAD-binding aptamer and a GMP-binding aptamer were synthesized and assayed for activity. For this set of sequences, we observe a portion of a neutral network for FAD-binding function separated from GMP-binding function by a distance of three mutations. Furthermore, enzymatic probing of these aptamers revealed gross structural remodeling of the RNA coincident with the switch in ligand recognition. The capacity for neutral drift along an FAD-binding network in such close approach to RNAs with GMP-binding activity illustrates the degree of phenotypic buffering available to a set of closely related RNA sequences—defined as the sets functional tolerance for point mutations—and supports neutral evolutionary theory by demonstrating the facility with which a new phenotype becomes accessible as that buffering threshold is crossed.  相似文献   
999.
There is a long-running debate on the working mechanism of myosin molecular motors, which, by interacting with actin filaments, convert the chemical energy of ATP into a variety of mechanical work. After the development of technologies for observing and manipulating individual working molecules, experimental results negating the widely accepted 'lever-arm hypothesis' have been reported. In this paper, based on the experimental results so far accumulated, an alternative hypothesis is proposed, in which motor molecules are modelled as electromechanical components that interact with each other through electrostatic force. Electrostatic attractive force between myosin and actin is assumed to cause a conformational change in the myosin head during the attachment process. An elastic energy resulting from the conformational change then produces the power stroke. The energy released at the ATP hydrolysis is mainly used to detach the myosin head from actin filaments. The mechanism presented in this paper is compatible with the experimental results contradictory to the previous theories. It also explains the behavior of myosins V and VI, which are engaged in cellular transport and move processively along actin filaments.  相似文献   
1000.
During the 1840s and 1850s the Britishembryologist and histologist Martin Barry(1802–1855) propounded a bold and originalthesis about the microscopic structure ofanimal and vegetable tissue. He maintainedthat minute double spirals were virtuallyubiquitous in the makeup of a wide range ofstructures. This paper considers how a claimof this kind was consonant with a romanticimage of scientific creativity with which Barryidentified. It describes his partiallysuccessful strategies to convincecontemporaries of the veracity of his claims. Major figures in the field, such as RichardOwen and Jan Evangelista Purkyn, affirmed thatBarry's spirals were real objects in nature. Others, notably William Sharpey, becameconvinced that the spirals were mere artefactsand that Barry was deeply flawed as ascientific investigator. The ultimaterejection of his hypothesis had much to do withthe moral repugnance that Barry's attempts togain credit for a major discovery evoked amonginfluential medical scientists. This negativeassessment of Barry as an investigator revealsthe lineaments of an alternative ethic ofscientific practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号