首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   118篇
  国内免费   226篇
  2024年   3篇
  2023年   37篇
  2022年   39篇
  2021年   36篇
  2020年   43篇
  2019年   68篇
  2018年   49篇
  2017年   54篇
  2016年   57篇
  2015年   60篇
  2014年   86篇
  2013年   138篇
  2012年   61篇
  2011年   67篇
  2010年   65篇
  2009年   102篇
  2008年   79篇
  2007年   86篇
  2006年   84篇
  2005年   89篇
  2004年   66篇
  2003年   64篇
  2002年   45篇
  2001年   49篇
  2000年   35篇
  1999年   38篇
  1998年   32篇
  1997年   20篇
  1996年   19篇
  1995年   26篇
  1994年   25篇
  1993年   23篇
  1992年   30篇
  1991年   11篇
  1990年   15篇
  1989年   23篇
  1988年   13篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   11篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
排序方式: 共有1918条查询结果,搜索用时 656 毫秒
51.
本研究使用单因素方法考察了无花果(Ficus carica L.)果皮中花青素的最佳提取条件,并考察了7种参数对花青素提取率的影响。参数设置如下:溶剂性质(水,甲醇,乙醇和丙酮)、提取次数(1~3次)、固液比(1/50,1/100,1/150和1/200)、提取时间(60 min,120 min,180 min和240 min)、甲醇浓度(0,20%,40%,60%,80%和100%)、酸类型(盐酸,乙酸,柠檬酸和酒石酸)和酸浓度(0,1%,2%,5%和10%)。使用pH-示差法测量无花果果皮中单体花色素的含量。研究显示,无花果果皮中花青素的最佳提取条件为:溶剂为甲醇溶剂,提取次数为2次,固液比为1/100,提取时间为180 min,甲醇浓度为80%,酸类型为柠檬酸,柠檬酸浓度为5%。该最佳提取条件下的花青素的提取率达到最高(345.62 mg/100g DS)。  相似文献   
52.
The influence of operational conditions (pH, temperature and oxygen transfer rate) on the initial reaction rates of the four reactions involved in the 4S biodesulfurization route of dibenzothiophenes (DBT) has been studied. The bioprocess was carried out using a genetically modified organism, Pseudomonas putida CECT 5279. The rates of the four reactions were calculated from the rates of production of different compounds involved in the 4S pathway, by matrix manipulation. The initial (zero time) reaction rates showed a slight dependence on oxygen transfer rate. Temperature and pH were optimal at 30°C and 9, respectively, temperature being the most important variable. This study also identifies the last reaction as the limiting step in the pathway.  相似文献   
53.
This work addresses the problem of prescribing proper boundary conditions at the artificial boundaries that separate the vascular district from the remaining part of the circulatory system. A multiscale (MS) approach is used where the Navier–Stokes equations for the district of interest are coupled to a non-linear system of ordinary differential equations which describe the circulatory system. This technique is applied to three 3D models of a carotid bifurcation with increasing stenosis resembling three phases of a plaque growth. The results of the MS simulations are compared to those obtained by two stand-alone models. The MS shows a great flexibility in numerically predicting the haemodynamic changes due to the presence of a stenosis. Nonetheless, the results are not significantly different from a stand-alone approach where flows derived by the MS without stenosis are imposed. This is a consequence of the dominant role played by the outside districts with respect to the stenosis resistance.  相似文献   
54.
Haemodynamics is believed to play an important role in the initiation, growth and rupture of intracranial aneurysms. In this context, computational haemodynamics has been extensively used in an effort to establish correlations between flow variables and clinical outcome. It is common practice in the application of Dirichlet boundary conditions at domain inlets to specify transient velocities as either a flat (plug) profile or a spatially developed profile based on Womersley's analytical solution. This paper provides comparative haemodynamics measures for three typical cerebral aneurysms.

Three dimentional rotational angiography images of aneurysms at three common locations, viz. basilar artery tip, internal carotid artery and middle cerebral artery were obtained. The computational tools being developed in the European project @neurIST were used to reconstruct the fluid domains and solve the unsteady Navier–Stokes equations, using in turn Womersley and plug-flow inlet velocity profiles. The effects of these assumptions were analysed and compared in terms of relevant haemodynamic variables within the aneurismal sac. For the aneurysm at the basilar tip geometries with different extensions of the afferent vasculature were considered to study the plausibility of a fully-developed axial flow at the inlet boundaries.

The study shows that assumptions made on the velocity profile while specifying inlet boundary conditions have little influence on the local haemodynamics in the aneurysm, provided that a sufficient extension of the afferent vasculature is considered and that geometry is the primary determinant of the flow field within the aneurismal sac. For real geometries the Womersley profile is at best an unnecessary over-complication, and may even be worse than the plug profile in some anatomical locations (e.g. basilar confluence).  相似文献   
55.
We study the nonlinear interaction of an aortic heart valve, composed of hyperelastic corrugated leaflets of finite density attached to a stented vessel under physiological flow conditions. In our numerical simulations, we use a 2D idealised representation of this arrangement. Blood flow is caused by a time-varying pressure gradient that mimics that of the aortic valve and corresponds to a peak Reynolds number equal to 4050. Here, we fully account for the shear-thinning behaviour of the blood and large deformations and contact between the leaflets by solving the momentum and mass balances for blood and leaflets. The mixed finite element/Galerkin method along with linear discontinuous Lagrange multipliers for coupling the fluid and elastic domains is adopted. Moreover, a series of challenging numerical issues such as the finite length of the computational domain and the conditions that should be imposed on its inflow/outflow boundaries, the accurate time integration of the parabolic and hyperbolic momentum equations, the contact between the leaflets and the non-conforming mesh refinement in part of the domain are successfully resolved. Calculations for the velocity and the shear stress fields of the blood reveal that boundary layers appear on both sides of a leaflet. The one along the ventricular side transfers blood with high momentum from the core region of the vessel to the annulus or the sinusoidal expansion, causing the continuous development of flow instabilities. At peak systole, vortices are convected in the flow direction along the annulus of the vessel, whereas during the closure stage of the valve, an extremely large vortex develops in each half of the flow domain.  相似文献   
56.
57.
《Free radical research》2013,47(10):781-792
Abstract

The relevance of reactive oxygen species (ROS) production relies on the dual role shown by these molecules in aerobes. ROS are known to modulate several physiological phenomena, such as immune response and cell growth and differentiation; on the other hand, uncontrolled ROS production may cause important tissue and cell damage, such as deoxyribonucleic acid oxidation, lipid peroxidation, and protein carbonylation. The manganese superoxide dismutase (MnSOD) antioxidant enzyme affords the major defense against ROS within the mitochondria, which is considered the main ROS production locus in aerobes. Structural and/or functional single nucleotide polymorphisms (SNP) within the MnSOD encoding gene may be relevant for ROS detoxification. Specifically, the MnSOD Ala16Val SNP has been shown to alter the enzyme localization and mitochondrial transportation, affecting the redox status balance. Oxidative stress may contribute to the development of type 2 diabetes, cardiovascular diseases, various inflammatory conditions, or cancer. The Ala16Val MnSOD SNP has been associated with these and other chronic diseases; however, inconsistent findings between studies have made difficult drawing definitive conclusions. Environmental factors, such as dietary antioxidant intake and exercise have been shown to affect ROS metabolism through antioxidant enzyme regulation and may contribute to explain inconsistencies in the literature. Nevertheless, whether environmental factors may be associated to the Ala16Val genotypes in human diseases still needs to be clarified.  相似文献   
58.
Abstract

Net ecosystem exchange (NEE), leaf gas exchange and biochemical traits were investigated in an irrigated maize crop grown under Mediterranean conditions. Sub-optimal irrigation water supply determined a drought stress during the early vegetative growth stage (45–49 days after swing) that decreased NEE. Drought, in the late vegetative stage, also caused a reduction of leaf gas exchange. In the latter period, proline, glycine and serine, as well as sucrose leaf contents increased, while starch, proteins and glucose contents decreased. In the early reproductive stage, the crop experienced a longer dry spell that induced a reduction in canopy as well as in leaf gas exchanges, while protein and free amino acid contents decreased with respect to the late vegetative stage. Both ecophysiological and biochemical data demonstrate a good capacity of cultivar Pioneer PR32D99 to endure the environmental stress, related to Mediterranean summer drought, leading to an elevated dry matter yield at harvest. Photosynthetic apparatus appeared fairly resistant to soil water shortage due likely to the increased leaf content of organic solutes, such as amino acids and soluble sugars.  相似文献   
59.
60.
Specific root length as an indicator of environmental change   总被引:4,自引:0,他引:4  
Abstract

Specific root length (SRL, m g?1) is probably the most frequently measured morphological parameter of fine roots. It is believed to characterize economic aspects of the root system and to be indicative of environmental changes. The main objectives of this paper were to review and summarize the published SRL data for different tree species throughout Europe and to assess SRL under varying environmental conditions. Meta-analysis was used to summarize the response of SRL to the following manipulated environmental conditions: fertilization, irrigation, elevated temperature, elevated CO2, Al-stress, reduced light, heavy metal stress and physical disturbance of soil. SRL was found to be strongly dependent on the fine root classes, i.e. on the ectomycorrhizal short roots (ECM), and on the roots <0.5 mm, <1 mm, <2 mm and 1 – 2 mm in diameter SRL was largest for ECM and decreased with increasing diameter. Changes in soil factors influenced most strongly the SRL of ECM and roots <0.5 mm. The variation in the SRL components, root diameter and root tissue density, and their impact on the SRL value were computed. Meta-analyses showed that SRL decreased significantly under fertilization and Al-stress; it responded negatively to reduced light, elevated temperature and CO2. We suggest that SRL can be used successfully as an indicator of nutrient availability to trees in experimental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号