首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   85篇
  国内免费   183篇
  2024年   6篇
  2023年   28篇
  2022年   28篇
  2021年   36篇
  2020年   33篇
  2019年   47篇
  2018年   36篇
  2017年   27篇
  2016年   23篇
  2015年   38篇
  2014年   57篇
  2013年   86篇
  2012年   52篇
  2011年   85篇
  2010年   52篇
  2009年   52篇
  2008年   58篇
  2007年   86篇
  2006年   66篇
  2005年   72篇
  2004年   58篇
  2003年   36篇
  2002年   27篇
  2001年   35篇
  2000年   14篇
  1999年   25篇
  1998年   20篇
  1997年   19篇
  1996年   16篇
  1995年   11篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   9篇
  1990年   15篇
  1989年   9篇
  1988年   10篇
  1987年   3篇
  1986年   8篇
  1985年   8篇
  1984年   13篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
排序方式: 共有1388条查询结果,搜索用时 15 毫秒
71.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age‐related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First‐degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top‐ranked senescence‐related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3‐overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.  相似文献   
72.
Objectives:Peroneal nerves Schwannomas are rare benign tumors. Literature is still poor of studies about clinical and functional outcomes after surgical treatment. We evaluated the pre-operative presentation of the disease and assessed clinical and functional outcomes after surgery.Methods:We collected all the cases of peroneal nerves’ neurinoma treated surgically between June 2016 and June 2020. We analyzed each patients’ personal data and carried out accurate clinical examinations before and after surgery. MRI was performed both pre-operatively and post-operatively.Results:We reported 9 cases of peroneal nerves schwannomas: five arising from the common peroneal nerve and four arising from the deep or superficial branches alone. Their mean size was 22.6 mm. Each patient showed sensation deficits before surgery; pre-operative MRC score was 4.2. Pre-Operative MSTS and LEFS scores were 23.6 and 64.4. Surgery was successful in each case. No local recurrence nor major complication occurred. Tumor size was significantly associated with both diagnostic delay and development of pre-operative deficits. Surgery was proven to be globally successful: post-operative evaluations highlighted a marked reduction of neurological signs and overall functional limitations.Conclusions:Surgical treatment at early stages of the disease represents a reliable and relatively safe therapeutic option.  相似文献   
73.
In mouse mammary C127i cells, during whole-cell clamp, osmotic cell swelling activated an anion channel current, when the phloretin-sensitive, volume-activated outwardly rectifying Cl(-) channel was eliminated. This current exhibited time-dependent inactivation at positive and negative voltages greater than around +/-25 mV. The whole-cell current was selective for anions and sensitive to Gd(3)+. In on-cell patches, single-channel events appeared with a lag period of approximately 15 min after a hypotonic challenge. Under isotonic conditions, cell-attached patches were silent, but patch excision led to activation of currents that consisted of multiple large-conductance unitary steps. The current displayed voltage- and time-dependent inactivation similar to that of whole-cell current. Voltage-dependent activation profile was bell-shaped with the maximum open probability at -20 to 0 mV. The channel in inside-out patches had the unitary conductance of approximately 400 pS, a linear current-voltage relationship, and anion selectivity. The outward (but not inward) single-channel conductance was suppressed by extracellular ATP with an IC(50) of 12.3 mM and an electric distance (delta) of 0.47, whereas the inward (but not outward) conductance was inhibited by intracellular ATP with an IC(50) of 12.9 mM and delta of 0.40. Despite the open channel block by ATP, the channel was ATP-conductive with P(ATP)/P(Cl) of 0.09. The single-channel activity was sensitive to Gd(3)+, SITS, and NPPB, but insensitive to phloretin, niflumic acid, and glibenclamide. The same pharmacological pattern was found in swelling-induced ATP release. Thus, it is concluded that the volume- and voltage-dependent ATP-conductive large-conductance anion channel serves as a conductive pathway for the swelling-induced ATP release in C127i cells.  相似文献   
74.
Cultured cerebellar granule neurons exposed to gradual reductions in osmolarity (-1.8 mOsm/min) maintained constant volume up to -50% external osmolarity (pi(o)), showing the occurrence of isovolumetric regulation (IVR). Amino acids, Cl-, and K+ contributed at different phases of IVR, with early efflux threshold for [3H]taurine, D-[3H]aspartate (as marker for glutamate) of pi(o) -2% and -19%, respectively, and more delayed thresholds of -30% for [3H]glycine and -25% and -29%, respectively, for Cl- (125I) and K+ (86Rb). Taurine seems preferentially involved in IVR, showing the lowest threshold, the highest efflux rate (five-fold over other amino acids) and the largest cell content decrease. Taurine and Cl- efflux were abolished by niflumic acid and 86Rb by 15 mM Ba2+. Niflumic acid essentially prevented IVR in all ranges of pi(o). Cl--free medium impaired IVR when pi(o) decreased to -24% and Ba2+ blocked it only at a late phase of -30% pi(o). These results indicate that in cerebellar granule neurons: (i) IVR is an active process of volume regulation accomplished by efflux of intracellular osmolytes; (ii) the volume regulation operating at small changes of pi(o) is fully accounted for by mechanisms sensitive to niflumic acid, with contributions of both Cl- and amino acids, particularly taurine; (iii) Cl- contribution to IVR is delayed with respect to other niflumic acid-sensitive osmolyte fluxes (osmolarity threshold of -25% pi(o)); and (iv), K+ fluxes do not contribute to IVR until a late phase (< -30% pi(o)).  相似文献   
75.
Ion exchange properties of plant root cell walls   总被引:1,自引:0,他引:1  
Meychik  N.R.  Yermakov  I.P. 《Plant and Soil》2001,234(2):181-193
Acid-base properties and the swelling capacity of wheat, lupin and pea root cell walls were investigated. Roots of seedlings and green plants of different age were analysed by the potentiometric method. The ion exchange capacity (S i) and the swelling coefficient (K cw) of root cell walls were estimated at various pH values (from 2 to 12) and at different ionic strength (between 0.3 and 1000 mM). To analyse the polysigmoid titration curves pHi = f (S i), the Gregor's equation was employed. It was shown that the Gregor's model fits well the experimental data. The total number of the cation exchange (S t cat) and the anion exchange (S t an) groups were determined in the root cell walls. The number of the functional group of each type (S j) was estimated, and the corresponding values of pK a j were calculated. It was shown that for all types of cation exchangeable groups arranged in the cell wall structure the acid properties are enhanced by the increasing concentration of electrolyte. For each ionogenic group the coefficients of Helfferich's equation [pK a j = f (C K+)] were determined. It was found that the swelling of root cell walls changes with pH, C K+ and strongly depends on plant species. Within the experimental pH and C K+ range the swelling coefficient changes as follows: lupin > pea > wheat. The obtained results show that for the plant species under investigation the differences in the swelling coefficients originate from (a) the differences in the cross-linking degrees of polymeric chains arranged in the cell wall structure, (b) the differences in the number of carboxyl groups and (c) the differences in the total number of functional groups. Based on the estimated swelling coefficients in water it could be inferred that for wheat the cross-linking degree of the polymeric chains in the root cell walls is higher than those for lupin or pea. It has been emphasized that the calculated parameters (S j, pK a j, K cw), the equation {pK a j = f (CK+)} and the dependencies {K cw = f (CK+, pH)} allow to estimate quantitatively the changes in the ion exchange capacity of the root cell walls in response to the changes in an ionic composition of an outer solution. The results of these estimations allow to suggest that (a) the root apoplast is a compartment where the accumulation of cations takes place during the first stage of cation uptake from an outer medium, and (b) the accumulation degree is defined by pH and ionic composition of an outer solution. On the basis of the literature review and the results of the present experimental study it was proposed that the changes in the cell wall swelling in response to variances of environmental or experimental conditions could lead to a change of the water flow through a root apoplast. It has been supported that there is direct relationship between the swelling of root cell walls and the water flow within the plant root apoplast.  相似文献   
76.
Formin was originally isolated as the gene affected by the murine limb deformity (ld) mutations, which disrupt the epithelial-mesenchymal interactions regulating patterning of the vertebrate limb autopod. More recently, a rapidly growing number of genes with similarity to formin have been isolated from many different species including fungi and plants. Genetic and biochemical analysis shows that formin family members function in cellular processes regulating either cytokinesis and/or cell polarisation. Another common feature among formin family members is their requirement in morphogenetic processes such as budding and conjugation of yeast, establishment of Drosophila oocyte polarity and vertebrate limb pattern formation. Vertebrate formins are predominantly nuclear proteins which control polarising activity in limb buds through establishment of the SHH/FGF-4 feedback loop. Formin acts in the limb bud mesenchyme to induce apical ectodermal ridge (AER) differentiation and FGF-4 expression in the posterior AER compartment. Finally, disruption of the epithelial-mesenchymal interactions controlling induction of metanephric kidneys in ld mutant embryos indicates that formin might function more generally in transduction of morphogenetic signals during embryonic pattern formation. Received: 24 September 1998 / Accepted: 30 September 1998  相似文献   
77.
Isolating Mortierella alpina strains of high yield of arachidonic acid   总被引:4,自引:0,他引:4  
AIMS: To develop a fast isolation method for arachidonic acid-producing fungi of high yield. METHODS AND RESULTS: Relation between the staining degree of mycelia of Mortierella alpina stained with triphenyltetrazolium chloride (TTC) and arachidonic acid content in the fungal lipids was investigated. Results showed that staining degree of mycelia stained with TTC increased when arachidonic acid content in mycelia lipids increased. This finding was used to isolate strains of high arachidonic acid yield. Arachidonic acid producing fungi were selectively isolated from soil at a low temperature of 4 degrees C and the mycelia of these isolates were stained with TTC. CONCLUSIONS: The strain M. alpina M6 that had the highest staining degree had the highest arachidonic acid content (72.3%). The yield of arachidonic acid in this strain reached 4.82 g l(-1). SIGNIFICANCE AND IMPACT OF THE STUDY: A fast and effective method to isolate strains of high arachidonic acid yield was established according to the finding that staining degree of mycelia of M. alpina was positively correlated with arachidonic acid content in mycelia lipid.  相似文献   
78.
Wnt signaling molecules regulate the development of multiple organs in vertebrate embryos. We have isolated cDNA clones for frizzled10 (Fz10), which encodes a putative Wnt receptor, to further characterize the mechanisms of Wnt signaling in mouse embryos. Interestingly, Fz10 is expressed in the same regions as Wnt7a in the neural tube, limb buds, and Müllerian duct.Edited by R.P. Elinson  相似文献   
79.
In order to investigate the correlation of cell lineage, gene expression, and morphogenesis of uniramous and biramous limbs we studied limb formation in the thorax and pleon of the amphipod Orchestia cavimana and the isopod Porcellio scaber. We took advantage of the fact that in amphipod and isopod crustaceans—both Malacostraca—uniramous limbs evolved independently in the thorax whereas ancestral biramous limbs are formed in the pleon (abdomen). The gene Distal-less is expressed in the early limb buds as in other arthropods. Accordingly, it is likely to be responsible for the development of the proximodistal axis of the appendages. Double staining of Distal-less and Engrailed proteins suggests that Distal-less in the pleon of the amphipod Orchestia might not be under the control of the Wingless protein. Additionally, we studied axis formation of the uniramous and biramous limbs. In both species investigated, biramous limbs originate exclusively by the subdivision of the original limb bud. Both distal elements continuously express Distal-less. There is flexibility in the suppression of the development of additional branches in the crustacean limb. In the amphipod O. cavimana, uniramous thoracopods are formed by downregulation of Distal-less in the area where, in biramous limbs, the exopodites would occur. In contrast, this region never expresses Distal-less in the uniramous thoracopods of the isopod P. scaber. Our results suggest that the gene expression pattern is independent of the cell division pattern. Gene expression domains and morphogenesis of limbs and segments, on the other hand, show a good correlation.Edited by D. Tautz  相似文献   
80.
Oreopithecus bambolii, an ape from the late Miocene of Italy, is said to possess a hand capable of a precision grip like that of humans. Relative hand length, proportions of the thumb, and morphological features of the thumb and wrist were adduced to support the idea that Oreopithecus had a hand that closely matched the pattern in Australopithecus. A reappraisal of earlier arguments and comparisons of Oreopithecus with humans, apes, and Old World monkeys, reveals that Oreopithecus had an essentially ape-like hand that emphasized ape-like power grasping over human-like precision grasping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号