首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3380篇
  免费   325篇
  国内免费   152篇
  2023年   62篇
  2022年   64篇
  2021年   97篇
  2020年   156篇
  2019年   154篇
  2018年   129篇
  2017年   124篇
  2016年   141篇
  2015年   140篇
  2014年   169篇
  2013年   322篇
  2012年   116篇
  2011年   153篇
  2010年   93篇
  2009年   174篇
  2008年   169篇
  2007年   154篇
  2006年   128篇
  2005年   81篇
  2004年   88篇
  2003年   79篇
  2002年   57篇
  2001年   43篇
  2000年   40篇
  1999年   49篇
  1998年   60篇
  1997年   50篇
  1996年   37篇
  1995年   25篇
  1994年   40篇
  1993年   43篇
  1992年   42篇
  1991年   23篇
  1990年   38篇
  1989年   40篇
  1988年   33篇
  1987年   34篇
  1986年   37篇
  1985年   28篇
  1984年   41篇
  1983年   19篇
  1982年   29篇
  1981年   37篇
  1980年   42篇
  1979年   27篇
  1978年   18篇
  1977年   16篇
  1976年   16篇
  1973年   46篇
  1972年   16篇
排序方式: 共有3857条查询结果,搜索用时 15 毫秒
61.
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.  相似文献   
62.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
63.
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.  相似文献   
64.
The Light mutation (Blt) is a dominant allele of the b-locus on mouse chromosome 4 which causes progressive dilution of coat colour. Melanocytes within the hair follicles of mutant mice develop normally but later degenerate, due to the accumulation of a toxic product, so that the hair becomes lighter with age. Previous studies on W-locus spotting mutants, from which melanocytes are absent, have shown that melanocytes in the stria vascularis of the inner ear are essential for the development and/or maintenance of the endocochlear potential (EP) which is normally around 100 mV. In this study, physiological recordings from the ears of Light mutants were correlated with strial ultrastructure. EPs recorded from all b/b controls and young homozygous and heterozygous mutants (20–22 days old) were normal (77 to 113 mV), but were reduced (19 to 59 mV) in about 30% of ears from older mutants (Blt/Blt and Blt/b). Strial function therefore appears to develop normally but later degenerates in some mutants. This suggests that strial melanocytes are affected by the Light allele and that the continued presence of melanocytes is necessary for strial function. There was no obvious association between the recorded EP value and the ultrastructural appearance of the stria. No structural abnormalities of the stria were noted in control or mutant mice aged 20 days to 4 months including those which had a reduced EP. Strial atrophy was common in old controls and mutants (1–2 years), and appeared to be an age-related process rather than an effect of the Light mutation. Similarly, pigment build-up was common in all strial cells of old mice. However, the accumulations of lipofuscin-like pigment were much larger and more abundant in aged brown non-agouti mice than those observed in old agouti mice, which suggests that this age-related process also has a genetic component.  相似文献   
65.
Light and electron microscopy was used to study the ultrastructural effects of June Yellows (JY) in leaves of strawberry. Four cultivars of strawberry, affected to different extents by JY, were compared with healthy (JY-free) cv. Cambridge Favourite and with strawberry infected with strawberry crinkle rhabdovirus, Fragaria vesca infected with strawberry mottle virus (SMotV), raspberry and black currant showing virus-induced yellowing and with strawberry and raspberry showing chaemeric yellow sectors in the leaves. Except for isometric virus-like particles detected in SMotV-infected F. vesca, no virus-like particles or structures of other pathogenic agents were found in any of the tissues examined. Leaf cells of JY-affected strawberry showed severe disruption of chloroplasts and plasmalemma, whorls of membranous vesicles and decreased vacuole size. The extent and severity of these abnormalities increased with increased severity of JY symptoms but, even in leaves with mild JY symptoms, chloroplast abnormalities were obvious. In the most severely affected leaves, the cells lacked discrete vacuoles and extensive hypertrophy was seen in other organelles such as nuclei and mitochondria. Few, if any, ultrastructural abnormalities were observed in virus-infected strawberry or F. vesca, or in chaemeric leaves of strawberry and raspberry. By contrast, in raspberry and black currant with yellowed leaves caused by virus infection, the cells showed enlarged chloroplasts, decreased vacuole size and vesicle formation. However, chloroplast enlargement and disruption in this material seemed due to increased size of starch grains which were largely absent from swollen chloroplasts of JY-affected strawberry. The ultrastructural abnormalities observed in JY-affected strawberry are, therefore, not inconsistent with the possibility that a pathogenic agent may be involved in the condition.  相似文献   
66.
In order to investigate nutritional interactions in the symbiotic scleractinian coral-zooxanthella association, fatty acids of the coral Galaxea fascicularis were analysed in two groups of cultured microcolonies. The first group was fed with Artemia sp., while the second group was starved. After an initial 1-month period during which both groups were subjected to the same normal light conditions (constant irradiance of 125 E·cm-2·s-1 and 14:10 h light:dark), a light cap was used to cover the aquarium and keep all the microcolonies in permanent darkness for 20 days. During the light phase of the experiment it was shown that the nutritional status lead to large variations in the percentage of saturated, mono-unsaturated and polyunsaturated fatty acids. Palmitic acid (C16:0) was the most abundant fatty acid in both groups. Important differences between fed and starved microcolonies occurred during the dark phase of the experiment. In the fed group the dark phase was characterized by a significant increase in polyunsaturated fatty acids. Particularly arachidonic acid (C20:4 n-6) became the most important fatty acid followed by docosatrienoic acid (C22:3 n-3). A slight increase in these two fatty acids was also found in the starved group but the bulk of polyunsaturated fatty acids was significantly decreased. In this group, palmitic acid remained the most important fatty acid while an increased concentration of cis-vaccenic acid (C18:1 n-7) was found at the end of the experiment. The increased concentration of cis-vaccenic acid might indicate that bacteria serve as a source of energy. While the number of zooxanthellae per milligram of protein and the chlorophyll a to protein ratio strongly decreased in the starved microcolonies immediately after the beginning of the dark period, the decrease in fed microcolonies was delayed for about 10 days. Furthermore, after 20 days of dark incubation the chlorophyll a to protein ratio was the same as measured at the beginning of the dark period. This suggests that in the dark the metabolic requirements of the zooxanthellae are in part met from the animal host through a heterotrophic mode of nutrition.Abbreviations CZ cultured zooxanthellae - FAME fatty acid methylester(s) - FDM fed dark microcolonies - FLM fed light microcolonies - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SDM starved dark microcolonies - SFA saturated fatty acids - SLM starved-light microcolonies - SW sea water - TFA total fatty acids  相似文献   
67.
Optical methods to measure membrane transport processes   总被引:6,自引:0,他引:6  
  相似文献   
68.
We studied the spatial distribution of fruits and plants, mortality and growth rates ofScaphium macropodum (Sterculiaceae) in four 1-ha plots in a tropical rain forest in West Kalimantan, Indonesia. The species is a large deciduous tree and produces wind-dispersed fruits on defoliated twigs. The density of dispersed fruits on the ground decreased with increasing distance from a parent tree. The area under the parent's crown had the highest density of the fruits and the highest mortality of the seedlings immediately after germination. Consequently, the density of the established seedlings peaked 14 m from the tree which is outside its crown. Thick litter mainly from the parent tree seemed to physically prevent the seedlings' root from reaching the soil surface and caused the high mortality. Juvenile and mature trees distributed exclusively, suggesting that regeneration is the most successful outside of the crown of mature trees. Saplings under canopy shade did not grow well.Scaphium macropodum is hypothesized to require a gap for seedling growth and successful regeneration, whereas it can germinate and last under closed canopies as suppressed seedlings or saplings.  相似文献   
69.
In this study we investigated the influence of red light, which naturally occurs during dawn and dusk, on locomotor activity and body temperature rhythms of Djungarian hamsters (Phodopus sungarus). A single weak red light pulse given 2 h before regular lights on had acute as well as long-term effects persisting for several days following exposure. The hamsters immediately stopped their locomotor activity, accompanied by a drop in body temperature. In the following undisturbed nights (LD 168) the nocturnal activity stopped earlier than usual. This lasting effect of the light pulse was more pronounced than the acute effect. The activity phase compressed gradually during 3 to 5 days after the light pulse was administered while time of activity onset was almost unaffected. It took 6 to 11 days for complete recovery of the original activity phase. The maximal activity compression and the recovery period depended on the duration of the single red light pulse and its intensity. Red light pulses of 15 min duration were about twice effective as 1 min pulses; and the effect of a red light pulse of 130 mW/m2 was about 1.5 times stronger than a 30 mW/m2 red light pulse. The maximal value of activity phase compression reached in this experiment was 2.5+0.2 h with a recovery period of 11.1±0.3 days following a given red light pulse of 90 mW/m2 and 15 min. The morning oscillator seems to be persistently affected. This indicates a very high photosensitivity of the Djungarian hamster's circadian system to red light.Abbreviations T b body temperature - DD constant darkness - LD light:dark cycle - LL constant light - duration of activity phase - CT circadian time - PRC phase response curve - SCN suprachiasmatic nuclei  相似文献   
70.
Summary About 360 offspring of a tri-parental cross were screened by gel electrophoresis and unexpectedly one of them did not contain chromosome 1B -gliadins derived from either of the primary parents. A line disomic for the -gliadin null was developed from the surviving embryo half of the unique grain. Two dimensional electrophoresis revealed that all the storage protein genes at Gli-B1, coding for -gliadins, -gliadins and low-molecular-weight subunits of glutenin as well as the -gliadin, were not expressed. The nuclei of dividing root-tip cells were shown by light microscopy to lack the normal short-arm satellites of chromosome 1B, indicating that the genes for the missing storage proteins had been lost through a terminal deletion. Using a radioactive ribosomal RNA probe, the deficient 1B chromosomes were shown to contain ribosomal RNA genes demonstrating that at least two-thirds of the short arm was still present. Examination of serial sections of chromosome 1B at metaphase by low-power electron microscopy showed that the point of scission of this chromosome was within the secondary constriction where the ribosomal RNA genes are located. The Gli-B1 locus must therefore be carried on the short-arm satellite. Transmission of the deficient chromosome from female gametes to progeny was normal (i.e., about 50%) but from pollen it was poor (8.8%). Recombination mapping indicated that the distance from the ribosomal RNA genes (Nor1) to Glu-B1 was 22 cM, equivalent to 13 cM from Nor1 to the centromere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号