首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12363篇
  免费   658篇
  国内免费   436篇
  13457篇
  2024年   28篇
  2023年   109篇
  2022年   149篇
  2021年   134篇
  2020年   255篇
  2019年   340篇
  2018年   376篇
  2017年   252篇
  2016年   256篇
  2015年   271篇
  2014年   897篇
  2013年   1167篇
  2012年   696篇
  2011年   736篇
  2010年   486篇
  2009年   573篇
  2008年   551篇
  2007年   602篇
  2006年   538篇
  2005年   520篇
  2004年   389篇
  2003年   403篇
  2002年   334篇
  2001年   312篇
  2000年   225篇
  1999年   251篇
  1998年   252篇
  1997年   205篇
  1996年   207篇
  1995年   264篇
  1994年   240篇
  1993年   209篇
  1992年   187篇
  1991年   118篇
  1990年   111篇
  1989年   71篇
  1988年   63篇
  1987年   52篇
  1986年   57篇
  1985年   66篇
  1984年   86篇
  1983年   67篇
  1982年   84篇
  1981年   64篇
  1980年   55篇
  1979年   33篇
  1978年   23篇
  1977年   28篇
  1976年   20篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
22.
Abstract: Reactive oxygen species have been implicated in neuronal injury associated with various neuropathological disorders. However, little is known regarding the relationship between antioxidant enzyme capacity and resultant toxicity. The antioxidant pathways of primary cerebrocortical cultures were directly examined using a novel technique that measures pentose phosphate pathway (PPP) activity, which is enzymatically coupled to glutathione peroxidase (GPx) detoxification of hydrogen peroxide (H2O2). PPP activity was quantified from data obtained by gas chromatography/mass spectrometry analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose by cerebrocortical cultures. The antioxidant capacity of these cultures was systematically evaluated using H2O2, and the resultant toxicity was quantified by lactate dehydrogenase release. Exposure of primary mixed and purified astrocytic cultures to H2O2 caused stimulation of PPP activity in a concentration-dependent fashion from 0.25 to 22.2% and from 6.9 to 66.7% of glucose metabolized to lactate through the PPP, respectively. In the mixed cultures, chelation of iron before H2O2 exposure was protective and resulted in a correlation between PPP saturation and toxicity. Conversely, addition of iron, inhibition of GPx, or depletion of glutathione decreased H2O2-induced PPP stimulation and increased toxicity. These results implicate the Fenton reaction, reflect the pivotal role of GPx in H2O2 detoxification, and contribute to our understanding of the etiological role of free radicals in neuropathological conditions.  相似文献   
23.
Molecular dynamics simulations were carried out on an insulin crosslinked between the N-terminal A chain and the C-terminal B chain to form a so-called mini-proinsulin: N -A1-N -B29-diaminosuberoyl insulin (DASI). To investigate the influence of crosslinking on the dynamics of the insulin moiety, the bridge was removed from a transient DASI structure and simulation was carried on independently with the then unlinked (ULKI) as well as with the crosslinked species. The effects of crystal packing and quaternary interactions were checked by simulating both types of monomers and dimers known from the hexamer structure. All simulations were compared to previous ones of native insulin. DASI shows general similarity to the native simulations in most parts of the structure. Deviations are visible in the segments to which the bridge is directly connected, i.e. their flexibility is reduced. Upon removal of the bridge the ULKI simulations reapproach those of native insulin. The influence of the bridge spreads over the whole molecule, but all of its main structural features remain intact. The simulations suggest that the displacement of the C-terminal B chain of native insulin, considered important for receptor interaction, is prevented by the bridge, which also partially shields some binding residues. This is in accordance with the poor biological potency of A1-B29-crosslinked insulins.Abbreviations DASI-insulin(DASI) bovineN -A1-N -B29-di-aminosuberoyl insulin - ULK-insulin (ULKI) Native beef insulin with the bridge of DASI removed  相似文献   
24.
The three-dimensional structure of the photosynthetic reaction center fromRhodobacter sphaeroides is described. The reaction center is a transmembrane protein that converts light into chemical energy. The protein has three subunits: L, M, and H. The mostly helical L and M subunits provide the scaffolding and the finely tuned environment in which the chromophores carry out electron transfer. The details of the protein-chromophore interactions are from studies of a trigonal crystal form that diffracted to 2.65-Å resolution. Functional studies of the multi-subunit complex by site-specific replacement of key amino acid residues are summarized in the context of the molecular structure.This work was supported in part by the U.S. Department of Energy, Office of Health and Environmental Research, under Contract No. W-31-109-ENG-38 and by Public Health Service Grant GM36598.  相似文献   
25.
26.
27.
We use the electron-conformational interaction approach to develop a physical model which self-consistently describes the photomobilized electron transfer kinetics and structure conformational transitions in reaction centers (RCs) of purple bacteria. We consider the kinetics of electron transition from pigment onto primary acceptor and the subsequent charge recombination accounting for the change of distance between the above-mentioned cofactors. It is shown that, given natural values of RC parameters, the kinetic constant's dependence on the acting light intensity is monotone. As opposed to the previous case, similar dependencies for the chain of electron transfer between primary and secondary quinone acceptors revealed anS-like relationship. This can lead to bistability of the RC optical transmission coefficient and a fundamental dependence of charge recombination kinetics upon the prehistory of the RC's interaction with exciting radiation.  相似文献   
28.
Age-Dependent Impairment of Mitochondrial Function in Primate Brain   总被引:11,自引:2,他引:9  
Abstract: It has been hypothesized that some of the functional impairments associated with aging are the result of increasing oxidative damage to mitochondrial DNA that produces defects in oxidative phosphorylation. To test this hypothesis, we examined the enzymes that catalyze oxidative phosphorylation in crude mitochondrial preparations from frontoparietal cortex of 20 rhesus monkeys (5-34 years old). Samples were assayed for complex I, complex II-III, complex IV, complex V, and citrate synthase activities. When enzyme activities were corrected for citrate synthase activities (to account for variable degrees of mitochondrial enrichment), linear regression analysis demonstrated a significant negative correlation of the activities of complex I (p < 0.002) and complex IV (p < 0.03) with age but no significant change in complex II-III or complex V activities. Relative to animals 6.9 ± 0.9 years old (n = 7), the citrate synthase-corrected activity of complex I was reduced by 17% in animals 22.5 ± 0.9 years old (n = 6) (p < 0.05) and by 22% in animals 30.7 ± 0.9 years old (n = 7) (p < 0.01). Similar age-related reductions in the activities of complexes I and IV were obtained when enzyme activities were corrected for complex II-III activity. These findings show an age-associated progressive impairment of mitochondrial complex I and complex IV activities in cerebral cortices of primates.  相似文献   
29.
Sperm from the American lobster (Homarus americanus) are normally nonmotile. However, during fertilization, the sperm undergo a calcium-dependent acrosome reaction that propels them forward about 18 μMm. The reaction occurs in two phases, eversion and ejection, which take place too quickly to permit analysis by direct observation. The purposes of this study were to examine the structural changes occurring in sperm during the normal acrosome reaction and to determine the rate of the reaction using video microscopy. The reaction was induced in vitro by ionophore A23187 and recorded using a video system attached to a Nikon Nomarski interference microscope. Videotapes were played back frame by frame (30 frames/sec), and images of reactions from 10 sperm were analyzed. The acrosome reaction, including the eversion of the acrosomal vesicle and ejection of the subacrosomal material and nucleus, can be divided into 4 steps: (1) expansion of the apical cap followed by expansion of the remainder of the acrosomal cylinder; expansion of the cylinder begins at its apical end and proceeds toward its base, (2) eversion of the apical half of the acrosomal vesicle and initial contraction of the apical cap, (3) eversion of the basal half of the acrosomal vesicle, continued contraction of the apical cap, and ejection of the subacrosomal material and nucleus, and (4) final contraction of the apical cap and ejection of the acrosomal filament. During steps 2, 3, and 4, the mean forward movement of sperm is 12.7, 3.9, and 1.1 μMm, respectively. Although the time required to complete the reaction ranged from 0.66 to 5.16 s, most sperm reacted in less than 3. s, and these sperm were considered to have typical rates. For sperm that reacted in less than 3 s, both step 1 and step 4 take about 0.2 s and show little variation among sperm. the time required to complete steps 2 and 3 averaged 0.63 and 0.37 s, respectively. Forward movement of the sperm during the acrosome reaction is caused by eversion of the inner and outer acrosomal material and contraction of the apical cap. The protein(s) responsible for this contraction is not yet known. © 1993 Wiley-Liss, Inc.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号