首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   13篇
  国内免费   7篇
  679篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   15篇
  2019年   21篇
  2018年   17篇
  2017年   11篇
  2016年   15篇
  2015年   14篇
  2014年   34篇
  2013年   44篇
  2012年   31篇
  2011年   54篇
  2010年   60篇
  2009年   40篇
  2008年   39篇
  2007年   43篇
  2006年   35篇
  2005年   27篇
  2004年   25篇
  2003年   19篇
  2002年   19篇
  2001年   6篇
  2000年   10篇
  1999年   12篇
  1998年   5篇
  1997年   6篇
  1996年   12篇
  1995年   9篇
  1994年   2篇
  1993年   8篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
排序方式: 共有679条查询结果,搜索用时 15 毫秒
11.
Oncogenes,protein tyrosine kinases,and signal transduction   总被引:1,自引:0,他引:1  
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of thesrc homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs.  相似文献   
12.
The activation functions AF1 and AF2 of nuclear receptors mediate the recruitment of coregulators in gene regulation. AF1 is mapped to the highly variable and intrinsically unstructured N terminal domain and AF2 lies in the conserved ligand binding domain. The unstructured nature of AF1 offers structural plasticity and hence functional versatility in gene regulation. However, little is known about the key functional residues of AF1 that mediates its interaction with coregulators. This study focuses on the progesterone receptor (PR) and reports the identification of K464, K481 and R492 (KKR) as the key functional residues of PR AF1. The KKR are monomethylated and function cooperatively. The combined mutations of KKR to QQQ render PR isoform B (PRB) hyperactive, whereas KKR to FFF mutations abolishes as much as 80% of PR activity. Furthermore, the hyperactive QQQ mutation rescues the loss of PR activity due to E911A mutation in AF2. The study also finds that the magnitudes of the mutational effect differ in different cell types as a result of differential effects on the functional interaction with coregulators. Furthermore, KKR provides the interface for AF1 to physically interact with p300 and SRC-1, and with AF2 at E911. Intriguingly, the inactive FFF mutant interacts strikingly stronger with both SRC-1 and AF2 than wt PRB. We propose a tripartite model to describe the dynamic interactions between AF1, AF2 and SRC-1 with KKR of AF1 and E911 of AF2 as the interface. An overly stable interaction would hamper the dynamics of disassembly of the receptor complex.  相似文献   
13.
Plants contain three classes of hemoglobins which are not associated with nitrogen fixing bacteria, and have been accordingly termed nonsymbiotic hemoglobins. The function of nonsymbiotic hemoglobins is as yet mostly unknown. A NO dioxygenase activity has been proposed and demonstrated for some of them in vitro. In this context, a sound molecular mechanism that relates the structure with the biological activity is crucial to suggest a given physiological role. Insight into such a mechanism is now facilitated by recent progress made in both experimental and computational techniques. These studies have highlighted a number of key structural features implicated in the function of nonsymbiotic hemoglobins. The bis-histidyl hexacoordination of the heme in both its ferric and ferrous states provides a powerful and general tool to modulate reactivity, protein dynamics, and shape of the cavities. In addition, the specific arrangement of distal cavity residues provides effective protection against autoxidation. Inspection of the static crystal structures available for both liganded and unliganded states seems unsufficient to explain the function of these proteins. Function appears to be intimately linked with protein flexibility, which influences the dynamical behavior of inner cavities, capable of delivering apolar reactants to the reaction site, and removing charged reaction products. In this mini review, we demonstrate how the integration of information derived from experimental assays and computational studies is valuable and can shed light into the linkage between structural plasticity of nonsymbiotic hemoglobins and their biological role.  相似文献   
14.
Metal-fluoride complexes have been used to induce E2P-like states with the aim of studying the events that occur during E2P hydrolysis in P-type ATPases. In the present work, we compared the E2P-like state induced by a beryllium fluoride complex (BeFx) with the actual E2P state formed through backdoor phosphorylation of the Na,K-ATPase. Formation of E2P and E2P-like states were investigated employing the styryl dye RH421. We found that BeFx is the only fluorinated phosphate analog that, like Pi, increases the RH421 fluorescence. The observed rate constant, kobs, for the formation of E2P decreases with [Pi] whereas that of E2BeFx increases with [BeFx]. This might wrongly be taken as evidence of a mechanism where the binding of BeFx induces a conformational transition. Here, we rather propose that, like for Pi, binding of BeFx follows a conformational-selection mechanism, i.e. it binds to the E2 conformer forming a complex that is much more stable than E2P, as seen from its impaired capacity to return to E1 upon addition of Na+. Although E2P and E2BeFx are able to form states with 2 occluded Rb+, both enzyme complexes differ in that the affinity for the binding and occlusion of the second Rb+ is much lower in E2BeFx than in E2P. The higher rates of Rb+ occlusion and deocclusion observed for E2BeFx, as compared to those observed for other E2P-like transition and product states suggest a more open access to the cation transport sites, supporting the idea that E2BeFx mimics the E2P ground state.  相似文献   
15.
Many late-stage cancer cells express Fas ligand (FasL) and show high malignancy with metastatic potential. We report here a novel signaling mechanism for FasL that hijacks the Met signal pathway to promote tumor metastasis. FasL-expressing human tumor cells express a significant amount of phosphorylated Met. The down-regulation of FasL in these cells led to decreased Met activity and reduced cell motility. Ectopic expression of human FasL in NIH3T3 cells significantly stimulated their migration and invasion. The inhibition of Met and Stat3 activities reverted the FasL-associated phenotype. Notably, FasL variants activated the Met pathway, even though most of their intracellular domain or Fas binding sites were deleted. FasL interacted with Met through the FasL(105-130) extracellular region in lipid rafts, which consequently led to Met activation. Knocking down Met gene expression by RNAi technology reverted the FasL-associated motility to basal levels. Furthermore, treatment with synthetic peptides corresponding to FasL(117-126) significantly reduced the FasL/Met interaction, Met phosphorylation, and cell motility of FasL(+) transfectants and tumor cells. Finally, the transfectants of truncated FasL showed strong anchorage-independent growth and lung metastasis potential in null mice. Collectively, our results establish the FasL-Met-Stat3 signaling pathway and explains the metastatic phenotype of FasL-expressing tumors.  相似文献   
16.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   
17.
The hydrological system of Lagoa Vermelha, a dolomite-precipitating lagoon in Brazil, was investigated using hydrogen and oxygen stable isotopic composition of the water collected during an annual cycle (1996–1997). These data demonstrated that dolomite formed in May–June during high saline conditions. High salinity apparently provides the ions and saturation state necessary for dolomite precipitation. Ion concentrations in the lagoon water indicated an identical timing of dolomite precipitation and demonstrated that dolomite formed at decreased sulfate concentrations. In Brejo do Espinho, a neighbouring lagoon, the ion concentrations in the water column revealed that dolomite precipitates throughout the year, most likely due to its higher salinity than Lagoa Vermelha during the measured period. In Lagoa Vermelha, high 34S of pore water sulfate and high sulfide concentrations correlated with dolomitic horizons, demonstrating the association of bacterial sulfate reduction with dolomite formation. In Brejo do Espinho high 34S of pore water sulfate and high sulfide concentrations occurred throughout the dolomitic sedimentary column. We conclude that elevated salinity and sulfate reduction are the main factors inducing dolomite precipitation in these lagoons, confirming the microbial dolomite formation theory. These results suggest that there may be other settings where sulfate-reducing bacteria induce dolomite precipitation under saline conditions, such as deep-sea sediments or sabkhas, and imply that microbial dolomite may significantly contribute to the sedimentary carbonate budget, particularly in the earliest Earth's history when anoxic conditions were more prevalent.  相似文献   
18.
19.
白细胞介素2亲和性配体的筛选   总被引:3,自引:0,他引:3  
白细胞介素2(IL-2)及其受体拮抗剂的研究对免疫抑制药物的研制具有重要作用.抗白细胞介素2受体α链中和性单克隆抗体5G1(抗Tac型抗体)能够特异性地阻断IL-2与其受体的结合.因此,5G1可作为目标分子被用来在噬菌体展示肽库中筛选白细胞介素2的亲和性配体.经过4轮亲和性筛选以及5G1亲和活性的测定,6个具有明显5G1亲和活性的噬菌体克隆被发现.DNA序列分析结果显示出,所得到的肽序列具有明显的保守性,即SSFT(L/P)I.该序列与IL-2受体α链没有同源性.因此,SSFT(L/P)I可能模拟了IL-2受体α链上的一个不连续表位(mimotope),为白细胞介素2亲和性配体片段.  相似文献   
20.
We achieved exhaustive alanine scanning mutational analysis of the amino acid residues lining the ligand binding pocket of the Vitamin D receptor to investigate the mechanism of the ligand recognition by the receptor. This is the first exhaustive analysis in the nuclear receptor superfamily. Our results demonstrated the role and importance of all the residues lining the ligand binding pocket. In addition, this analysis was found to indicate ligand-specific ligand-protein interactions, which have key importance in determining the transactivation potency of the individual ligands. Thus, the analysis using 1beta-methyl-1alpha,25-dihydroxyvitamin D(3) revealed the specific van der Waals interactions of 1beta-methyl group with the receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号