首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   147篇
  国内免费   34篇
  2024年   4篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   34篇
  2019年   45篇
  2018年   44篇
  2017年   48篇
  2016年   30篇
  2015年   31篇
  2014年   28篇
  2013年   19篇
  2012年   7篇
  2011年   16篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
181.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   
182.
Lithium‐rich layered oxides are promising candidate cathode materials for the Li‐ion batteries with energy densities above 300 Wh kg?1. However, issues such as the voltage hysteresis and decay hinder their commercial applications. Due to the entanglement of the transition metal (TM) migration and the anionic redox upon lithium extraction at high potentials, it is difficult to recognize the origin of these issues in conventional Li‐rich layered oxides. Herein, Li2MoO3 is chosen since prototype material to uncover the reason for the voltage hysteresis as the TM migration and anionic redox can be eliminated below 3.6 V versus Li+/Li in this material. On the basis of comprehensive investigations by neutron powder diffraction, scanning transmission electron microscopy, synchrotron X‐ray absorption spectroscopy, and density functional theory calculations, it is clarified that the ordering–disordering transformation of the Mo3O13 clusters induced by the intralayer Mo migration is responsible for the voltage hysteresis in the first cycle; the hysteresis can take place even without the anionic redox or the interlayer Mo migration. A similar suggestion is drawn for its iso‐structured Li2RuO3 (C2/c). These findings are useful for understanding of the voltage hysteresis in other complicated Li‐rich layered oxides.  相似文献   
183.
Replacing the liquid electrolyte in lithium batteries with solid‐state ion conductor is promising for next‐generation energy storage that is safe and has high energy density. Here, nanometer‐resolution ionic and electronic transport imaging of Li3PS4 (LPS), a solid‐state electrolyte (SSE), is reported. This nm resolution is achieved by using a logarithm‐scale current amplifier that enhances the current sensitivity to the fA range. Large fluctuations of ion current—one to two orders of magnitude on the LPS and on the LPS region of a polymer/LPS bulk hybrid SSE—that must be mitigated to eliminate Li dendrite formation and growth, are found. This ion current fluctuation is understood in terms of highly anisotropic transport kinetic barriers along the different crystalline axes due to different grain orientations in the polycrystalline and glass ceramic materials. The results on the bulk hybrid SSE show a sharp transition of ionic and electronic transport at the LPS/polymer boundary and decreases in average ionic current with decreasing polyimine particle size and with extensive cycling. The results elucidate the mechanism of polyimine extension into interparticles to prevent Li dendrite growth. This work opens up novel characterization of charge transport, which relates to Li plating and stripping for solid‐state‐batteries.  相似文献   
184.
“Zero‐strain” compounds are ideal energy‐storage materials for long‐term cycling because they present negligible volume change and significantly reduce the mechanically induced deterioration during charging–discharging. However, the explored “zero‐strain” compounds are very limited, and their energy densities are low. Here, γ phase Li3.08Cr0.02Si0.09V0.9O4 (γ‐LCSVO) is explored as an anode compound for lithium‐ion batteries, and surprisingly its “zero‐strain” Li+ storage during Li+ insertion–extraction is found through using various state‐of‐the‐art characterization techniques. Li+ sequentially inserts into the 4c(1) and 8d sites of γ‐LCSVO, but its maximum unit‐cell volume variation is only ≈0.18%, the smallest among the explored “zero‐strain” compounds. Its mean strain originating from Li+ insertion is only 0.07%. Consequently, both γ‐LCSVO nanowires (γ‐LCSVO‐NW) and micrometer‐sized particles (γ‐LCSVO‐MP) exhibit excellent cycling stability with 90.1% and 95.5% capacity retention after as long as 2000 cycles at 10C, respectively. Moreover, γ‐LCSVO‐NW and γ‐LCSVO‐MP respectively deliver large reversible capacities of 445.7 and 305.8 mAh g?1 at 0.1C, and retain 251.2 and 78.4 mAh g?1 at 10C. Additionally, γ‐LCSVO shows a suitably safe operating potential of ≈1.0 V, significantly lower than that of the famous “zero‐strain” Li4Ti5O12 (≈1.6 V). These merits demonstrate that γ‐LCSVO can be a practical anode compound for stable, high‐energy, fast‐charging, and safe Li+ storage.  相似文献   
185.
To reconcile the energy storage ability and operational safety of lithium metal batteries (LMBs), a transformation from a liquid to a solid‐state system is required. However, Li volume variation, poor interfacial contact, and high operation temperatures hinder its practical applications. To address the above issues, here, an integral structure design for solid‐state LMBs is shown, in which a Li‐preinfused 3D carbon fiber (Li/CF) anode is ionically connected to a cathode via an autopolymerized gel electrolyte. The gel electrolyte helps to encapsulate the liquid electrolyte within the Li/CF anode and the cathode to improve the interfacial contact. The gel also serves as a reservoir that balances the liquid electrolyte supply during repeated Li stripping/plating process. As a result, the symmetrical cells and full cells with Li/CF electrodes exhibit improved cycling stability and effective suppression of dendrites at ambient temperature. This work facilitates the realization of solid‐state LMBs with high energy and high safety.  相似文献   
186.
滩涂和内陆盐碱地是重要的后备土地资源。近年来镉(Cd)、铅(Pb)等土壤重金属和锂(Li)污染对盐碱地开发利用和生产安全造成严重威胁。利用盐生植物修复污染盐土是最经济有效的方法。本研究以盐生植物盐角草SalicorniaeuropaeaL.为材料,采用盆栽方式,通过比较分析盐角草在不同浓度Cd(0-50mmol/L)、Pb(0-50 mmol/L)和Li(0-400 mmol/L)处理下的生长和生理生化指标及离子含量的变化,研究盐角草对3种金属污染物胁迫的耐性及积累特性,以期探讨盐角草在Cd、Pb、Li污染盐土修复中的应用潜力。结果显示,随着Cd、Pb处理浓度升高,盐角草的株高、鲜重和干重均显著下降。低浓度Li(≤20 mmol/L)处理促进盐角草的生长,而高浓度Li(≥20mmol/L)处理则抑制植物生长。盐角草对Cd、Pb、Li的耐受性顺序为Li>Pb>Cd。Cd、Pb、Li胁迫可能降低了盐角草对Na和K的吸收与转运而影响植株的生长。另一方面,盐角草抗氧化酶系统对Cd、Pb、Li胁迫表现出不同的响应机理,多种抗氧化物酶协同作用,抵制Cd、Pb、Li胁迫造成的氧化毒害。盐角草根和地上部分Cd、Pb、Li含量随着处理浓度的升高而增加,其中Cd和Pb的分布特征为根>地上部分,Li的分布特征为地上部分>根。研究结果表明盐角草对Cd、Pb、Li的胁迫均具有较强的耐受性与自我调节能力,且具有富锂特性,具备修复Cd、Pb、Li污染盐土的潜力。本研究为深入研究盐角草耐受Cd、Pb、Li胁迫的机制奠定了基础,揭示了利用盐角草修复高盐碱土壤中Cd、Pb、Li污染的应用潜力。  相似文献   
187.
植物表型是基因型与外界环境共同作用的结果。精确测量植物表型对于植物生理特征与功能性状研究具有重要意义。本研究以加拿大一枝黄花(Solidago canadensis)为对象,对20株植株进行3个月室内培养,各月利用地基激光雷达扫描(terrestrial Li DAR scanning,TLS)系统对实验植株进行多站扫描和点云融合,实现对植株生长过程的连续观测。对于扫描获取的离散点云,利用多端点三维坐标重构法获取植株高度,并基于叶片点云的Delaunay三角网重构叶片表面,获得植株的真实高度、叶面积、叶倾角和方位角等结构参量。对比手动测量结果,发现基于点云重构获得的植株高度与真实植株高度对比,二者间相似性的决定系数(R2)为0.991,叶面积、叶倾角、方位角相似性R2分别为0.989、0.949和0.871;基于TLS点云重构法实现了非破坏性的植物表型测量,能够获得高精度的植物表型特征;多时相扫描能精确监测植物生长过程的表型特征变化。  相似文献   
188.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2αLixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   
189.
190.
Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a global health problem. HuH-7 hepatoma-derived cells are widely used as the only cell-based HCV replication system for HCV research, including drug assays. Recently, using different hepatoma Li23-derived cells, we developed an HCV drug assay system (ORL8), in which the genome-length HCV RNA (O strain of genotype 1b) encoding renilla luciferase replicates efficiently. In this study, using the HuH-7-derived OR6 assay system that we developed previously and the ORL8 assay system, we evaluated 26 anti-HCV reagents, which other groups had reported as anti-HCV candidates using HuH-7-derived assay systems other than OR6. The results revealed that more than half of the reagents showed different anti-HCV activities from those in the previous studies, and that anti-HCV activities evaluated by the OR6 and ORL8 assays were also frequently different. In further evaluation using the HuH-7-derived AH1R assay system, which was developed using the AH1 strain of genotype 1b, several reagents showed different anti-HCV activities in comparison with those evaluated by the OR6 and ORL8 assays. These results suggest that the different activities of anti-HCV reagents are caused by the differences in cell lines or HCV strains used for the development of assay systems. Therefore, we conclude that plural HCV assay systems developed using different cell lines or HCV strains are required for the objective evaluation of anti-HCV reagents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号