首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   2篇
  国内免费   15篇
  2022年   2篇
  2021年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   20篇
  2013年   12篇
  2012年   7篇
  2011年   14篇
  2010年   11篇
  2009年   22篇
  2008年   29篇
  2007年   24篇
  2006年   23篇
  2005年   19篇
  2004年   8篇
  2003年   19篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   12篇
  1995年   13篇
  1994年   11篇
  1993年   4篇
  1992年   9篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1976年   1篇
  1972年   2篇
  1970年   2篇
排序方式: 共有376条查询结果,搜索用时 46 毫秒
371.
Midkine (MDK) and Pleiotrophin (PTN) belong to a group of heparin-binding growth factors that has been shown to have pleiotropic functions in various biological processes during development and disease. Development of the vertebrate eye is a multistep process that involves coordinated interactions between neuronal and non-neuronal cells, but very little is known about the potential function of MDK and PTN in these processes. In this study, we demonstrate by section in situ hybridization, the spatiotemporal expression of MDK and PTN during ocular development in chick and mouse. We show that MDK and PTN are expressed in dynamic patterns that overlap in a few non-neuronal tissues in the anterior eye and in neuronal cell layers of the posterior eye. We show that the expression patterns of MDK and PTN are only conserved in a few tissues in chick and mouse but they overlap with the expression of some of their receptors LRP1, RPTPZ, ALK, NOTCH2, ITGβ1, SDC1, and SDC3. The dynamic expression patterns of MDK, PTN and their receptors suggest that they function together during the multistep process of ocular development and they may play important roles in cell proliferation, adhesion, and migration of neuronal and non-neuronal cells.  相似文献   
372.
Oxidative damage to lens epithelial cells plays an important role in the development of age-related cataract, and the health of the lens has important implications for overall ocular health. As a result, there is a need for effective therapeutic agents that prevent oxidative damage to the lens. Thiol antioxidants such as tiopronin or N-(2-mercaptopropionyl)glycine (MPG), N-acetylcysteine amide (NACA), N-acetylcysteine (NAC), and exogenous glutathione (GSH) may be promising candidates for this purpose, but their ability to protect lens epithelial cells is not well understood. The effectiveness of these compounds was compared by exposing human lens epithelial cells (HLE B-3) to the chemical oxidant tert-butyl hydroperoxide (tBHP) and treating the cells with each of the antioxidant compounds. MTT cell viability, apoptosis, reactive oxygen species (ROS), and levels of intracellular GSH, the most important antioxidant in the lens, were measured after treatment. All four compounds provided some degree of protection against tBHP-induced oxidative stress and cytotoxicity. Cells treated with NACA exhibited the highest viability after exposure to tBHP, as well as decreased ROS and increased intracellular GSH. Exogenous GSH also preserved viability and increased intracellular GSH levels. MPG scavenged significant amounts of ROS, and NAC increased intracellular GSH levels. Our results suggest that both scavenging ROS and increasing GSH may be necessary for effective protection of lens epithelial cells. Further, the compounds tested may be useful for the development of therapeutic strategies that aim to prevent oxidative damage to the lens.  相似文献   
373.
In mammals, two spatially and temporally distinct waves of fiber cell differentiation are crucial steps for normal lens development. In between these phases, an anterior growth zone forms in which progenitor cells migrate circumferentially, terminally exit the cell cycle and initiate differentiation at the lens equator. Much remains unknown about the molecular pathways orchestrating these processes. Previously, the Notch signal transduction pathway was shown to be critical for anterior lens progenitor cell growth and differentiation. However, the ligand or ligand(s) that direct these events are unknown. Using conditional gene targeting, we show that Jagged1 is required for lens fiber cell genesis, particularly that of secondary fiber cells. In the absence of Jagged1, the anterior growth and equatorial transition zones fail to develop fully, with only a handful of differentiated fiber cells present at birth. Adult Jagged1 conditional mutants completely lack lenses, along with severe anterior chamber deformities. Our data support the hypothesis that Jagged1-Notch signaling conveys a lateral inductive signal, which is indispensable for lens progenitor cell proliferation and differentiation.  相似文献   
374.
Seed protein diversity of fourteen lentil cultivars grown in Turkey was studied by using sodium dodecyl sulfate polyacrylamide gel electrophoresis. A distance matrix was produced based on five polymorphic protein bands, scored for their absence as 0 and presence as 1. Seed protein distances among the cultivars ranged from 0.00 to 0.80. The dendrogram based on the distance matrix indicated two distinct clusters. The first cluster includes the cultivars Sultan 1, Meyveci 2001 and Kayi 91. The second cluster contains the cultivars Pul 11, Ozbek, Emre 20, Malazgirt 89, Ciftci, Seyran 96, AliDayi, Firat 87, Sazak, Erzurum 89 and YerliKirmizi.  相似文献   
375.
The most accurate method known to data for estimating age of wild vertebrates involves biochemical assay of eye lens proteins. Laboratory procedures that may be unfamiliar to many ecologists are described in detail. The method is based on precise changes in the amount of insoluble lens protein, and consists of two procedures: obtaining the appropriate lens fraction, and quantitatively analyzing its protein composition. Lenses are homogenized, and the insoluble fraction isolated by centrifugation. Protein content is measured colorimetrically by using the Lowry test. Instructions are given for single and double-beam spectrophotometers.  相似文献   
376.
Summary Vertebrate lenses show remarkably taxon-specific patterns of protein composition, most obviously in the recruitment of enzymes as major crystallins. Phylogenetic relationships are particularly apparent in mammals. Here we describe ν-crystallin, which is probably identical to cytosolic aldehyde dehydrogenase, lens-specifically expressed at high abundance in the elephant shrews, primitive eutherians of the family Macroscelidae, and μ-crystallin, a novel lens protein expressed in some marsupials. We have also observed that enzymes that have been recruited as crystallins in some species are also moderately abundant in the lenses of other species. This hints that the origins of enzyme-crystallins may lie in a pool of enzymes widely expressed in lenses at fairly high levels, perhaps because they have important developmental or functional roles in the tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号