首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   18篇
  国内免费   15篇
  244篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   16篇
  2010年   13篇
  2009年   9篇
  2008年   15篇
  2007年   10篇
  2006年   12篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
排序方式: 共有244条查询结果,搜索用时 0 毫秒
91.
Sphingolipids are bioactive molecules playing a key role as membrane components, but they are also central regulators of many intracellular processes including macroautophagy/autophagy. In particular, sphingosine-1-phosphate (S1P) is a critical mediator that controls the balance between sphingolipid-induced autophagy and cell death. S1P levels are adjusted via S1P synthesis, dephosphorylation or degradation, catalyzed by SGPL1 (sphingosine-1-phosphate lyase 1). Intracellular pathogens are able to modulate many different host cell pathways to allow their replication. We have found that infection of eukaryotic cells with the human pathogen Legionella pneumophila triggers a change in the host cell sphingolipid metabolism and specifically affects the levels of sphingosine. Indeed, L. pneumophila secretes a protein highly homologous to eukaryotic SGPL1 (named LpSPL). We solved the crystal structure of LpSPL and showed that it encodes lyase activity, targets the host's sphingolipid metabolism, and plays a role in starvation-induced autophagy during L. pneumophila infection to promote intracellular survival.  相似文献   
92.
原生动物作为军团菌的天然寄主,在军团菌的生存、增殖、毒力和抗逆性等方面起着重要的作用。通过多次转化筛选,获得了一种高量表达绿色荧光蛋白基因gfpmut2的自发突变质粒。该质粒在嗜肺军团菌细胞内稳定复制和表达;转化了该质粒的嗜肺军团菌在自然光下即可发出明亮的绿色荧光。以转化菌饲喂嗜热四膜虫BF1株后,在荧光显微镜下能清楚观察到细菌在细胞内的形态变化、增殖和裂解宿主细胞的过程。为研究嗜肺军团菌与原生动物寄主的相互关系提供了一种简单而直观的方法。  相似文献   
93.
The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species.  相似文献   
94.
Aims: This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real‐time PCR with the conventional culture method. Methods and Results: Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico‐chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real‐time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >104 CFU l?1 was found, and Leg. pneumophila serogroup 1 was isolated from 10·5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual‐free chlorine was found. Conclusions: This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real‐time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. Significance and Impact of the Study: This study indicates that the Italian hotels represent a possible source of risk for Legionnaires’ disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real‐time PCR and culture methods.  相似文献   
95.
A newly identified gene in Escherichia coli, fkpA, encodes a protein with extensive similarity to the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Chlamydia trachomatis. The FkpA protein may be a new member of the family of FK506-binding proteins (FKBPs) because its carboxyl domain includes a sequence that matches the consensus FK506-binding motif in 40 of 48 positions. including those amino acids at the active site that form hydrogen bonds with the drug FK506. The amino acid sequence of the 29kDa FkpA protein is 30–35% identical to the Mip proteins of L. pneumophila, L. micdadei, and C. trachomatis. Of the 270 amino acids of FkpA, 113 (42%) are identical to the sequence of one or another of these Mip proteins. Overexpression of FkpA or deletion of fkpA from the E. coli chromosome had no detrimental effect on bacterial growth, indicating that fkpA is not an essential gene. Hybridization of fkpA-specific DNA probes to genomic blots révealed that similar genes exist in several representatives of the Enterobacteriaceae. Thus, mip-like genes are not found exelusively in bacteria having a predominately intracellular life style, but instead appear to be a new FKBP subfamily that is a common constituent of many bacteria.  相似文献   
96.
Legionella species are the causative agent of Legionnaires’ disease, a potentially fatal bacterial pneumonia. New regulations and standards have prioritized the development of water safety plans to minimize the growth and spread of Legionella species in buildings. To determine the presence and type of Legionella in a water system, microbiological culturing is the gold standard method. However, recently new methodologies have been developed that claim to be sensitive and specific for Legionella at the genus or L. pneumophila at the species level. Published and anecdotal reports suggest that one of these newer culture-based, enzyme-substrate methods, the IDEXX Legiolert test, may exhibit false positivity with other microbes common to water sources. We experimentally evaluated the IDEXX Legiolert method using these other waterborne bacteria including Elizabethkingia meningoseptica, Pseudomonas aeruginosa, Proteus mirabilis and Serratia marcescens at real-world environmental concentrations. We saw false-positive results for the Legiolert test with several of these organisms, at sample concentrations as low as 60 CFU per ml. False-positive Legionella results can trigger costly remediation and water-use restrictions, that may be implemented while waiting for additional, confirmatory microbiological testing that could, in this case, yield no L. pneumophila.  相似文献   
97.
Human infections by the intracellular bacterial pathogen Legionella pneumophila result in a severe form of pneumonia, the Legionnaire's disease. L. pneumophila utilizes a Type IVb secretion (T4bS) system termed “dot/icm” to secrete protein effectors to the host cytoplasm. The dot/icm system is powered at least in part by a functionally critical AAA+ ATPase, a protein called DotB, thought to belong to the VirB11 family of proteins. Here we present the crystal structure of DotB at 3.19 Å resolution, in its hexameric form. We observe that DotB is in fact a structural intermediate between VirB11 and PilT family proteins, with a PAS‐like N‐terminal domain coupled to a RecA‐like C‐terminal domain. It also shares critical structural elements only found in PilT. The structure also reveals two conformers, termed α and β, with an αβαβαβ configuration. The existence of α and β conformers in this class of proteins was confirmed by solving the structure of DotB from another bacterial pathogen, Yersinia, where, intriguingly, we observed an ααβααβ configuration. The two conformers co‐exist regardless of the nucleotide‐bound states of the proteins. Our investigation therefore reveals that these ATPases can adopt a wider range of conformational states than was known before, shedding new light on the extraordinary spectrum of conformations these ATPases can access to carry out their function. Overall, the structure of DotB provides a template for further rational drug design to develop more specific antibiotics to tackle Legionnaire's disease. PDB Code(s): Will ; be ; provided  相似文献   
98.
99.
The opportunistic pathogen Legionella pneumophila, the etiologic agent of Legionnaires disease, is able to invade and multiply intracellularly in human macrophages. This process is controlled by several bacterial virulence factors. As recently demonstrated, one of these virulence factors, the macrophage infectivity potentiator (Mip) protein, is important for invasion and proper intracellular establishment of L. pneumophila in macrophages and protozoa. Knockout mutants devoid of a functional mip-gene enter host cells much less effectively but intracellular replication is not affected. Using a P(mip)-green fluorescent protein reporter construct in L. pneumophila substrain Corby, P(mip) was recently shown to be constitutively active in replicating bacteria. A stringent regulation during the infection process could not be observed, neither in intracellular nor in BYE broth-grown bacteria. For enhanced temporal and quantitative resolution, we examined the activity of mip on RNA level in order to detect short transient regulatory events. Our results show that P(mip) of L. pneumophila is temporarily repressed directly after invasion of the monocytic human cell line MonoMac 6 and regains activity after 24 h of intracellular replication.  相似文献   
100.
Legionella pneumophila is naturally found in fresh water were the bacteria parasitize within protozoa. It also survives planctonically in water or biofilms. Upon aerosol formation via man-made water systems, L. pneumophila can enter the human lung and cause a severe form of pneumonia, called Legionnaires' disease. The pathogenesis of Legionnaires' disease is largely due to the ability of L. pneumophila to invade and grow within macrophages. An important characteristic of the intracellular survival strategy is the replication within the host vacuole that does not fuse with endosomes or lysosomes. In recent times a great number of bacterial virulence factors which affect growth of L. pneumophila in both macrophages and protozoa have been identified. The ongoing Legionella genome project and the use of genetically tractable surrogate hosts are expected to significantly contribute to the understanding of bacterium-host interactions and the regulation of virulence traits during the infection cycle. Since person-to-person transmission of legionellosis has never been observed, the measures for disease prevention have concentrated on eliminating the pathogen from water supplies. In this respect detection and analysis of Legionella in complex environmental consortia become increasingly important. With the availability of new molecular tools this area of applied research has gained new momentum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号