首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   0篇
  2023年   1篇
  2022年   1篇
  2018年   3篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   10篇
  2006年   10篇
  2005年   4篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
111.
The aim of this study was to investigate the distribution of the oligosaccharides of the glycoconjugates in placentas from pregnancies complicated by different degree of altered glycaemia. Placentas from women with physiological pregnancies (group 1), with pregnancies complicated by minor degree of glucose intolerance (group 2) and with pregnancies complicated by gestational diabetes mellitus (GDM) treated with insulin (group 3) were collected. Ten lectins were used (ConA, WGA, PNA, SBA, DBA, LTA, UEA I, GSL II, MAL II and SNA) in combination with chemical and enzymatic treatments. The data showed a decrease of sialic acid linked α(2–6) to galactose/N-acetyl-d-galactosamine and an increase of N-acetyl-d-glucosamine in the placentas of the pathological groups, in particular the group 3, comparing to the group 1. A decrease of l-fucose (LTA) and d-galactose-(β1–3)-N-acetyl-d-galactosamine, and an increase and/or appearance of l-fucose (UEA I) and N-acetyl-d-galactosamine were observed in both the pathological groups, particularly in the group 2, with respect to the group 1. In GDM, and even in pregnancies with a simple alteration of maternal glycaemia, the changes in the distribution of oligosaccharides could be related to alteration of the structure and functionality of the placenta.  相似文献   
112.
Studies were carried out to identify proteins involved in the interface of Trypanosoma cruzi with the perimicrovillar membranes (PMM) of Rhodnius prolixus. Video microscopy experiments demonstrated high level of adhesion of T. cruzi Dm 28c epimastigotes to the surface of posterior midgut cells of non-treated R. prolixus. The parasites however were unable to attach to gut cells obtained from decapitated or azadirachtin-treated insects. The influence of carbohydrates on the adhesion to insect midgut was confirmed by inhibition of parasite attachment after midgut incubation with N-acetylgalactosamine, N-acetylmannosamine, N-acetylglucosamine, D-galactose, D-mannose or sialic acid. We observed that hydrophobic proteins in the surface of epimastigotes bind to polypeptides with 47.7, 45.5, 44, 43, 40.5, 36, 31 and 13kDa from R. prolixus PMM and that pre-incubation of lectins specifically inhibited binding to 31, 40.5, 44 and 45.5kDa proteins. We suggest that glycoproteins from PMM and hydrophobic proteins from epimastigotes are important for the adhesion of the parasite to the posterior midgut cells of the vector.  相似文献   
113.
The technique based on fluorescein-linked lectins used to determine the cell wall structure of anaerobic rumen fungi belonging to genera: Neocallimastix, Piromonas and Sphaeromonas, appears to be an interesting tool for distinguishing between strains. Furthermore this technique shows differences of cell wall composition between different parts of the thallus (spores, sporangia, rhizo?ds).  相似文献   
114.
Due to their ability to bind specifically to certain carbohydrate sequences, lectins are a frequently used tool in cytology, histology, and glycan analysis but also offer new options for drug targeting and drug delivery systems. For these and other potential applications, it is necessary to be certain as to the carbohydrate structures interacting with the lectin. Therefore, we used glycoproteins remodeled with glycosyltransferases and glycosidases for testing specificities of lectins from Aleuria aurantia (AAL), Erythrina cristagalli (ECL), Griffonia simplicifolia (GSL I-B4), Helix pomatia agglutinin (HPA), Lens culinaris (LCA), Lotus tetragonolobus (LTA), peanut (Arachis hypogaeae) (PNA), Ricinus communis (RCA I), Sambucus nigra (SNA), Vicia villosa (VVA), and wheat germ (Triticum vulgaris) (WGA) as well as reactivities of anti-carbohydrate antibodies (anti-bee venom, anti-horseradish peroxidase [anti-HRP], and anti-Lewisx). After enzymatic remodeling, the resulting neoglycoforms display defined carbohydrate sequences and can be used, when spotted on nitrocellulose or in enzyme-linked lectinosorbent assays, to identify the sugar moieties bound by the lectins. Transferrin with its two biantennary complex N-glycans was used as scaffold for gaining diverse N-glycosidic structures, whereas fetuin was modified using glycosidases to test the specificities of lectins toward both N- and O-glycans. In addition, α1-acid glycoprotein and Schistosoma mansoni egg extract were chosen as controls for lectin interactions with fucosylated glycans (Lewisx and core α1,3-fucose). Our data complement and expand the existing knowledge about the binding specificity of a range of commercially available lectins.  相似文献   
115.
116.
Cox KD  Layne DR  Scorza R  Schnabel G 《Planta》2006,224(6):1373-1383
Diseases of agricultural crops are caused by pathogens from several higher-order phylogenetic lineages including fungi, straminipila, eubacteria, and metazoa. These pathogens are commonly managed with pesticides due to the lack of broad-spectrum host resistance. Gastrodia anti-fungal protein (GAFP; gastrodianin) may provide a level of broad-spectrum resistance due to its documented anti-fungal activity in vitro and structural similarity to insecticidal lectins. We transformed tobacco (Nicotiana tabacum cv. Wisconsin 38) with GAFP-1 and challenged transformants with agriculturally important plant pathogens from several higher-order lineages including Rhizoctonia solani (fungus), Phytophthora nicotianae (straminipile), Ralstonia solanacearum (eubacterium), and Meloidogyne incognita (metazoan). Quantitative real-time PCR and western blotting analysis indicated that GAFP-1 was transcribed and translated in transgenic lines. When challenged by R. solani and P. nicotianae, GAFP-1 expressing lines had reduced symptom development and improved plant vigor compared to non-transformed and empty vector control lines. These lines also exhibited reduced root galling when challenged by M. incognita. Against R. solanacearum expression of GAFP-1 neither conferred resistance, nor exacerbated disease development. These results indicate that heterologous expression of GAFP-1 can confer enhanced resistance to a diverse set of plant pathogens and may be a good candidate gene for the development of transgenic, root-disease-resistant crops.  相似文献   
117.
Wu JH  Singh T  Herp A  Wu AM 《Biochimie》2006,88(2):201-217
Ricin (RCA60) is a potent cytotoxic protein with lectin domains, contained in the seeds of the castor bean Ricinus communis. It is a potential biohazard. To corroborate the biological properties of ricin, it is essential to understand the recognition factors involved in the ricin-glycotope interaction. In previous reports, knowledge of the binding properties of ricin was limited to oligosugars and glycopeptides with different specificities. Here, recognition factors of the lectin domains in ricin were examined by enzyme-linked lectinosorbent (ELLSA) and inhibition assays, using mammalian Gal/GalNAc structural units and corresponding polyvalent forms. Except for blood group GalNAcalpha1-3Gal (A) active and Forssman (GalNAcalpha1-3GalNAc, F) disaccharides, ricin has a broad range of affinity for mammalian disaccharide structural units-Galbeta1-4Glcbeta1-(Lbeta), Galbeta1-4GlcNAc (II), Galbeta1-3GlcNAc (I), Galbeta1-3GalNAcalpha1-(Talpha), Galbeta1-3GalNAcbeta1-(Tbeta), Galalpha1-3Gal (B), Galalpha1-4Gal (E), GalNAcbeta1-3Gal (P), GalNAcalpha1-Ser/Thr (Tn) and GalNAcbeta1-4Gal (S). Among the polyvalent glycotopes tested, ricin reacted best with type II-containing glycoproteins (gps). It also reacted well with several T (Thomsen-Friedenreich), tumor-associated Tn and blood group Sd. (a+)-containing gps. Except for bird nest and Tamm-Horsfall gps (THGP), this lectin reacted weakly or not at all with ABH-blood type and sialylated gps. From the present and previous results, it can be concluded that: (i) the combining sites of these lectin domains should be a shallow-groove type, recognizing Galbeta1-4Glcbeta1- and Galbeta1-3(4)GlcNAcbeta- as the major binding site; (ii) its size may be as large as a tetrasaccharide and most complementary to lacto-N-tetraose (Galbeta1-3GlcNAc beta1-3Galbeta1-4Glc) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc); (iii) the polyvalency of glycotopes, in general, enhances binding; (iv) a hydrophobic interaction in the vicinity of the binding site for sugar accommodation, increases the affinity for Galbeta-. This study should assist in understanding the glyco-recognition factors involved in carbohydrate-toxin interactions in biological processes. The effect of the polyvalent P/S glycotopes on ricin binding should be examined. However, this is hampered by the lack of availability of suitable reagents.  相似文献   
118.
Summary Variation in the native conformation of bean lectins was examined using electrophoresis of non-denatured total protein extracts and purified albumin and globulin lectin. The observed variation was related to the genetic variation reported previously for lectin polypeptide composition as revealed by two-dimensional isoelectricfocusing-sodium dodecyl sulfate polyacrylamide gel electrophoresis (IEF-SDS/PAGE). When eleven cultivars with different IEF-SDS/PAGE lectin polypeptide compositions were compared, eight had unique non-denatured lectin patterns and three had identical patterns. For some cultivars differences in non-denatured lectin patterns were observed between the purified albumin and globulin lectin preparations.  相似文献   
119.
Summary The glycoprotein secretions of the subcommissural organ were analyzed with the use of nine fluorescent lectins, specific to different sugar moieties. After exposure to Concanavalin A a bright fluorescence was observed in the ependymal cells of the subcommissural organs of all vertebrates studied (Lampetra planeri, Ameiurus nebulosus, Bufo bufo, Lacerta vivipara, Gallus gallus, Rattus norvegicus, Ovis aries). The fluorescence is abolished by the competitive sugar, -D-mannopyranosyl. The intensity of the lectin fluorescence decreases from the phylogenetically lower to the higher forms, paralleled by a change in polarity of the secretion from a vascular (lower vertebrates) to a ventricular (higher vertebrates) direction. The strong affinity for Concanavalin A suggests the presence of a glycoprotein rich in mannosyl residues in the ependymal cells and a similarity of composition of this glycoprotein among the vertebrates. Lens culinaris agglutinin and wheat germ agglutinin revealed fluorescent rosettes in the hypendymal cells of the sheep. Binding of both these lectins suggests the presence of a glycoprotein rich in N-acetyl-D-glucosamine.In the underlying ventricular cavity, no fluorescence could be observed, suggesting that the Reissner's fiber does not possess the same carbohydrate constitution as the ependymal secretion of the subcommissural organ.  相似文献   
120.
Summary Information about the chemical structure of ovine submandibular glycoconjugates was obtained in situ by means of a battery of peroxidase-conjugated lectins with affinity for specific terminal or internal sugars or sugar sequences in conjunction with neuraminidase digestion and periodate oxidation. Stored secretions in all mucous acinar cells contained disaccharide side chains consisting of Nacetylneuraminic acid linked to penultimate -N-acetylgalactosamine localizing the predominant disaccharide demonstrated biochemically. A previously unrecognized disaccharide consisting of terminal N-acetylneuraminic acid and penultimate -galactose was found in 20–30% of mucous acinar cells. Occasional clusters of acini composed purely of serous cells contained an additional unrecognized glycoconjugate with oligosaccharides terminated by sialic acid with O-acetylated polyhydroxyl side chains and penultimate -galactose. Serous demilunes, however, lacked detectable complex carbohydrate other than glycogen. Terminal sialic acid--galactose dimers were present on the apical surface of all ducts except for intercalated ducts coated only with neutral glycoconjugate. Fucose assayed biochemically as a minor component occurred in abundance in glycoconjugates at the apical surface of all intercalated and most striated duct cells and within some striated duct cells. Terminal -galactose not previously detected biochemically was localized at the apex of all duct cells. These results provide new knowledge concerning the structure of ovine submandibular glycoconjugates. They also illustrate the value of histochemical methods for elucidating the diversity of complex carbohydrates in an organ, locating different glycoconjugates in different types or subtypes of epithelial cells and demonstrating intracellular sites that contain complex carbohydrate.This research was supported by National Institute of Health Grants HL-29775 and AM-10956  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号