首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   128篇
  国内免费   166篇
  2024年   11篇
  2023年   14篇
  2022年   21篇
  2021年   25篇
  2020年   19篇
  2019年   26篇
  2018年   33篇
  2017年   40篇
  2016年   26篇
  2015年   41篇
  2014年   54篇
  2013年   48篇
  2012年   43篇
  2011年   48篇
  2010年   39篇
  2009年   117篇
  2008年   107篇
  2007年   112篇
  2006年   113篇
  2005年   103篇
  2004年   73篇
  2003年   57篇
  2002年   49篇
  2001年   39篇
  2000年   59篇
  1999年   67篇
  1998年   64篇
  1997年   60篇
  1996年   47篇
  1995年   43篇
  1994年   54篇
  1993年   52篇
  1992年   49篇
  1991年   53篇
  1990年   48篇
  1989年   37篇
  1988年   43篇
  1987年   37篇
  1986年   29篇
  1985年   33篇
  1984年   33篇
  1983年   10篇
  1982年   23篇
  1981年   29篇
  1980年   20篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1974年   2篇
  1973年   2篇
排序方式: 共有2184条查询结果,搜索用时 281 毫秒
181.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   
182.
Boron deficiency in coffee trees (Coffea arabica) is widespread, however, responses to B fertilizer have been erratic, depending on the year, method, and time of application. A better understanding of B uptake, distribution, and remobilization within the plant is important in developing a rational fertilization program. Field and greenhouse experiments were conducted to study B distribution and remobilization in coffee trees. Boron was provided either in the nutrient solution or sprayed on the leaves of trees grown under adequate or transient B deficiency. There was clear evidence for B translocation via symplast (remobilization) to coffee grains, even in well-nourished plants. When 10B was present in the nutrient solution during most part of fruit filling, from 33 to 40% of the B found in coffee fruits was absorbed during this period, depending on the timing and duration of the B deficiency treatment. In the field, when B was sprayed once on the leaves, around 4% of the fruit B was derived from the foliar fertilizer. Boron remobilization within coffee trees is limited in well nourished plants, but it can be significant during periods of temporary B deficiency in plants otherwise well nourished with B. The implications of these findings for B fertilization practice, are discussed.  相似文献   
183.
The aim of the present study was to identify water channel(s) which are expressed specifically in the growth zone of grass leaves and may facilitate growth-associated water uptake into cells. Previously, a gene had been described (HvEmip) which encodes a membrane intrinsic protein (MIP) and which is particularly expressed in the base 1 cm of barley primary leaves. The functionality of the encoding protein was not known. In the present study on leaf 3 of barley (Hordeum vulgare L.), a clone was isolated, termed HvPIP1;6, which has 99% amino acid sequence identity to HvEmip and belongs to the family of plasma membrane intrinsic proteins (PIPs). Expression of HvPIP1;6 was highest in the elongation zone, where it accounted for >85% of expression of known barley PIP1s. Within the elongation zone, faster grower regions showed higher expression than slower growing regions. Expression of HvPIP1;6 was confined to the epidermis, with some expression in neighboring mesophyll cells. Expression of HvPIP1;6 in Xenopus laevis oocytes increased osmotic water permeability 4- to 6-fold. Water channel activity was inhibited by pre-incubation of oocytes with 50 microM HgCl(2) and increased following incubation with the phosphatase inhibitor okadaic acid or the plant hormone ABA. Plasma membrane preparations were analyzed by Western blots using an antibody that recognized PIP1s. Levels of PIP1s were highest in the elongation and adjacent non-elongation zone. The developmental expression profile of HvPIP2;1, the only known barley water channel belonging to the PIP2 subgroup, was opposite to that of HvPIP1;6.  相似文献   
184.
Park SH  Kim CM  Je BI  Park SH  Park SJ  Piao HL  Xuan YH  Choe MS  Satoh K  Kikuchi S  Lee KH  Cha YS  Ahn BO  Ji HS  Yun DW  Lee MC  Suh SC  Eun MY  Han CD 《Planta》2007,227(1):1-12
OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a “blade to sheath transformation” phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::ΔOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
185.
Sesame (Sesamum indicum L.) is one of the most important oilseed crops, having seeds and oil that are highly valued as a traditional health food. The objective of this study was to evaluate leaf cuticular wax constituents across a diverse selection of sesame cultivars, and the responses of these waxes to drought-induced wilting. Water-deficit was imposed on 18 sesame cultivars by withholding irrigation for 15d during the post-flowering stage, and the effect on seed yield and leaf waxes compared with a well-watered control. Leaf cuticular waxes were dominated by alkanes (59% of total wax), with aldehydes being the next-most abundant class. Compared to well-irrigated plants, drought treatment caused an increase in wax amount on most cultivars, with only three cultivars having a notable reduction. When expressed as an average across all cultivars, drought treatment caused a 30% increase in total wax amount, with a 34% increase in total alkanes, a 13% increase in aldehydes, and a 28% increase in the total of unknowns. In all cultivars, the major alkane constituents were the C27, C29, C31, C33, and C35 homologs, whereas the major aldehydes were the C30, C32, and C34 homologs, and drought exposure had only minor effects on the chain length distribution within these and other wax classes. Drought treatments caused a large decrease in seed yield per plant, but did not affect the mean weight of individual seeds, showing that sesame responds to post-flowering drought by reducing seed numbers, but not seed size. Seed yield was inversely correlated with the total wax amount (-0.466*), indicating that drought induction of leaf wax deposition does not contribute directly to seed set. Further studies are needed to elucidate the ecological role for induction of the alkane metabolic pathway by drought in regulating sesame plant survival and seed development in water-limiting environments.  相似文献   
186.
Deoxyhypusine synthase (DHS) mediates the first of two enzymatic reactions required for the post-translational activation of eukaryotic translation initiation factor 5A (eIF5A), which in turn is thought to facilitate translation of specific mRNAs. Analyses of GUS activity in transgenic Arabidopsis plants expressing the GUS reporter gene under regulation of the promoter for AtDHS revealed that the expression of DHS changes both spatially and temporally as development progresses. In particular, DHS is expressed not only in rosette leaves, but also in the anthers of developing flowers. To determine the role of DHS in leaves, transgenic plants in which DHS was selectively suppressed in rosettes of Arabidopsis plants were prepared. This was achieved by expressing AtDHS 3'-UTR cDNA as a transgene under regulation of the promoter for AtRbcS2, a gene encoding the small subunit of Rubisco. The dominant phenotypic traits of the DHS-suppressed plants proved to be a dramatic enhancement of both vegetative and reproductive growth. As well, the onset of leaf senescence in the DHS-suppressed plants was delayed by approximately 1 week, but there was no change in the timing of bolting. In addition, there was no evidence for the negative pleiotropic effects, including stunted reproductive growth and reduced seed yield, noted previously for transgenic plants in which DHS was constitutively suppressed. The results indicate that DHS plays a pivotal role in both growth and senescence.  相似文献   
187.
蔡敏  朱华  王红 《云南植物研究》2007,29(5):497-512
利用光学显微镜和电子扫描显微镜研究了亚洲茜草科粗叶木属植物26种(包括1个亚种和2个变种)和相关4属即巴戟天属、九节属、染木属和尖叶木属6种植物的叶表皮微形态特征。粗叶木属植物上表皮细胞形状一般呈不规则波状、近椭圆形或者不规则多边形,下表皮细胞一般呈不规则皱波状或者多裂深波状,细胞壁曲折无章,细胞间界限不明显,上、下表皮细胞壁均有加厚现象。叶表皮角质层明显,在电镜下有以下几种类型:颗粒状,网状,鳞片状,乳突状。气孔器几乎全部生在下表皮,有些种气孔下陷,气孔器一般是一对保卫细胞和一对副卫细胞平列。一些粗叶木属植物种叶上着生表皮毛。表皮毛分为单细胞毛和单列多细胞毛两种结构类型以及扭曲毛,线形毛和直壁毛3种形态类型。相关属的叶表皮微形态特征与粗叶木属植物较为相似。粗叶木属植物叶表皮微形态特征具有一定的分类学价值,其性状虽有遗传稳定性,但随生态环境不同而有一定变异。粗叶木属植物叶气孔长轴径/径轴变化幅度比较大以及叶表皮上的毛被多样化均能反映其对生态环境的适应变化。  相似文献   
188.
External and internal flavonoids were isolated from 12 Uncarina taxa (Pedaliaceae), endemic to Madagascar. Four flavone aglycones, tricetin 7,3′,5′-trimethyl ether, tricetin 7,4′,5′-trimethyl ether, 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone and eupatorin were isolated from leaf wax of seven Uncarina taxa, Uncarina grandidieri, Uncarina decaryi, Uncarina abbreviata, Uncarina turicana, Uncarina platycarpa, Uncarina leandrii var. leandrii and Uncarina peltata, but not Uncarina stellulifera, Uncarina perrieri, Uncarina sakalava, Uncarina leptocarpa and U. leandrii var. rechbergeri. Furthermore, eight flavonoid glycosides were isolated from the leaves. Major glycosides were apigenin and luteolin 7-O-glucuronides and occurred in all the Uncarina taxa examined, except the absence of the former compound in U. peltata. Other glycosides were identified as hispidulin, jaceosidin, chrysoeriol and tricin 7-O-glucuronides, and luteolin 7,4′-di-O-glucuronide and a flavonol, isorhamnetin 3-O-diglucoside. From the results described above, methylated flavone aglycones and glucuronides were chemical characters of the leaves of Uncarina species, and also may be those of the family Pedaliaceae. Besides, an anthocyanin, two flavonols and three flavones were isolated from the flowers of U. grandidieri, and identified as cyanidin 3-O-rutinoside (anthocyanin), quercetin and isorhamnetin 7-O-glucuronides (flavonols) and apigenin, luteolin and jaceosidin 7-O-glucuronides (flavones).  相似文献   
189.
BACKGROUND AND AIMS: It has been proposed that having too much DNA may carry physiological consequences for plants. The strong correlation between DNA content, cell size and cell division rate could lead to predictable morphological variation in plants, including a negative relationship with leaf mass per unit area (LMA). In addition, the possible increased demand for resources in species with high DNA content may have downstream effects on maximal metabolic efficiency, including decreased metabolic rates. METHODS: Tests were made for genome size-dependent variation in LMA and metabolic rates (mass-based photosynthetic rate and dark respiration rate) using our own measurements and data from a plant functional trait database (Glopnet). These associations were tested using two metrics of genome size: bulk DNA amount (2C DNA) and monoploid genome size (1Cx DNA). The data were analysed using an evolutionary framework that included a regression analysis and independent contrasts using a phylogenetic tree with estimates of molecular diversification times. A contribution index for the LMA data set was also calculated to determine which divergences have the greatest influence on the relationship between genome size and LMA. KEY RESULTS AND CONCLUSIONS: A significant negative association was found between bulk DNA amount and LMA in angiosperms. This was primarily a result of influential divergences that may represent early shifts in growth form. However, divergences in bulk DNA amount were positively associated with divergences in LMA, suggesting that the relationship may be indirect and mediated through other traits directly related to genome size. There was a significant negative association between genome size and metabolic rates that was driven by a basal divergence between angiosperms and gymnosperms; no significant independent contrast results were found. Therefore, it is concluded that genome size-dependent constraints acting on metabolic efficiency may not exist within seed plants.  相似文献   
190.
Endophytic fungi were isolated from healthy, living, and symptomless tissues of inner bark, leaf, and roots of Aegle marmelos, a well-known medicinal plant, growing in different parts of India including Varanasi. A total of 79 isolates of endophytic fungi were isolated, representing 21 genera, adopting a standard isolation protocol. Members of the deuteromycotina were more prevalent than ascomycotina and others. The result was quite encouraging in terms of maximum isolates recovery from hyphomycetes (78.5%) followed by ascomycetes (8.9%) and coelomycetes (7.6%) respectively, which corroborates previous studies in same area. However, 5.1% isolates remained unidentified and were classified under Mycelia Sterilia. No isolate was obtained from either basidiomycotina or from zygomycotina. Fusarium spp. had maximum colonization frequency (8.00%) in this plant. The other dominant endophytic genera were Aspergillus spp., Alternaria sp., Drechslera sp., Rhizoctonia sp., Curvularia sp., Nigrospora sp., and Stenella sp. Only two ascomycetous members Chaetomium globosum and Emericella sp. (perfect state of Aspergillus sp.) were obtained from the bark sample. These results indicated that distribution of endophytic fungi within the A. marmelos is not even. Bark harbors more endophytic fungi than leaf and root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号