首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2024篇
  免费   133篇
  国内免费   176篇
  2024年   9篇
  2023年   16篇
  2022年   26篇
  2021年   31篇
  2020年   21篇
  2019年   23篇
  2018年   35篇
  2017年   42篇
  2016年   32篇
  2015年   41篇
  2014年   61篇
  2013年   57篇
  2012年   48篇
  2011年   54篇
  2010年   43篇
  2009年   123篇
  2008年   117篇
  2007年   118篇
  2006年   122篇
  2005年   112篇
  2004年   79篇
  2003年   67篇
  2002年   53篇
  2001年   41篇
  2000年   63篇
  1999年   71篇
  1998年   67篇
  1997年   63篇
  1996年   52篇
  1995年   46篇
  1994年   55篇
  1993年   55篇
  1992年   56篇
  1991年   52篇
  1990年   47篇
  1989年   38篇
  1988年   43篇
  1987年   37篇
  1986年   32篇
  1985年   32篇
  1984年   33篇
  1983年   11篇
  1982年   24篇
  1981年   30篇
  1980年   19篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1976年   2篇
  1974年   2篇
排序方式: 共有2333条查询结果,搜索用时 31 毫秒
971.
The roots of Epipremnum aureum, though not synthesizing nicotine themselves, take up exogenously fed nicotine as a xenobiotic. The alkaloid is subsequently translocated to the leaves, via the xylem path, where it accumulates in the mesophyll up to levels comparable with nicotine-rich Nicotiana species. The Epipremnum plants accept nicotine only up to a distinct level; saturation is reached after about 10 days. All mature, non-senescent leaves accumulate the same amount of nicotine. By different experimental approaches, unequivocal evidence could be provided that root pressure is the 'translocative force' for nicotine transport in E. aureum. Xylem sap exudates, collected from shoot stumps that were connected to an intact root system immersed in nicotine solution were analyzed for nicotine content. Nicotine uptake from the medium by the root and its subsequent transfer into the xylem of the shoot persisted for more than 10h without measurable decline of the transport rate, provided the nicotine concentrations applied were < or =0.05%. In intact plants, where both components of water transport in the xylem--root pressure and transpirative water flow--are in operation, no surplus transport of nicotine from the roots into the leaves took place beyond the level observed in amputated plants. Under the influence of inhibitors of root respiration, nicotine uptake was halted slowly in case of oxygen deprivation and in case of cyanide, or it stopped very rapidly when CCCP, an uncoupler of mitochondrial ATP formation, was applied to the roots. This threshold of toxicity against the xenobiotic was established by dose effect curves for nicotine sensitivity of the roots for root respiration and by transpiration measurements. Leaves, bearing a heavy 'nicotine load', showed symptoms of senescence only after 3-6 weeks, as indicated by a decline in the chlorophyll content, the chl a/b ratio, and the maximal quantum yield efficiency (Fv/Fm), and by an increase in catalase activity. Our results provide insight into the mechanisms of uptake, transport and storage of nicotine as a xenobiotic.  相似文献   
972.
Root cooling of 7-day-old wheat seedlings decreased root hydraulic conductivity causing a gradual loss of relative water content during 45 min (RWC). Subsequently (in 60 min), RWC became partially restored due to a decrease in transpiration linked to lower stomatal conductivity. The decrease in stomatal conductivity cannot be attributed to ABA-induced stomatal closure, since no increase in ABA content in the leaves or in the concentration in xylem sap or delivery of ABA from roots was found. However, decreased stomatal conductance was associated with a sharp decline in the content of cytokinins in shoots that was registered shortly after the start of root cooling and linked to increases in the activity of cytokinin-oxidase. This decrease in shoot cytokinin content may have been responsible for closing stomata, since this hormone is known to maintain stomatal opening when applied to plants. In support of this, pre-treatment with synthetic cytokinin benzyladenine was found to increase transpiration of wheat seedlings with cooled roots and bring about visible loss of turgor and wilting.  相似文献   
973.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   
974.
Shimizu M  Ishida A  Hogetsu T 《Oecologia》2005,143(2):189-197
We hypothesized that pioneer and late successional species show different morphological and physiological responses in water use after gap formation. The magnitude of the responses was compared between two pioneer species (Macaranga gigantea and Trema orientalis) and four late successional species (Shorea sp.), in an experiment in which saplings were transferred from shade to sun. Although transpiration demand increased following the transfer, root hydraulic conductivity (Lpr) decreased. Lpr was sensitive to brief treatments with HgCl2 (a specific inhibitor of aquaporins). This allows Lpr to be divided into two components: cell-to-cell and apoplastic pathways. The Lpr of cell-to-cell pathway decreased in all species following the transfer, relating to aquaporin depression in roots. Following the transfer, leaf osmotic potentials at full hydration decreased and both leaf mass per area [leaf mass/leaf area (LMA)] and fine-root surface area/leaf surface area (root SA/leaf SA) increased in almost all species, allowing saplings to compensate for the decrease in Lpr. Physiologically, pioneer species showed larger decreases in Lpr and more effective osmotic adjustment than late successional species, and morphologically, pioneer species showed larger increases in root SA/leaf SA and LMA. Water balance at the whole-plant level should be regulated by coupled responses between the aboveground and the belowground parts. Interspecific differences in responses after gap formation suggest niche differentiation in water use between pioneer and late successional species in accordance with canopy-gap size.  相似文献   
975.
The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO2 on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO2 depending on plant species and nymph developmental stage. Changes in RGR correlated with CO2-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO2 resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO2. When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO2, V. myrtillus and V. uliginosum consumption increased under elevated CO2 in females while it decreased in males compared to ambient CO2-grown leaves. Our findings suggest that rising atmospheric CO2 distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.  相似文献   
976.
Galmés J  Cifre J  Medrano H  Flexas J 《Oecologia》2005,145(1):21-31
Effects of water availability on seedling growth were analysed in eight Mediterranean species naturally occurring in the Balearic Islands. Seedlings were grown outdoors during summer under two irrigation treatments: field capacity and 35% of field capacity. The relative growth rate (RGR) strongly depended on the growth form, from highest values in herbs to lowest in woody perennials. The main component associated with interspecific variation in RGR was the specific leaf area (SLA), and a quantitative grouping of the different growth forms appeared along the regression line between both parameters. The slow-growing species, i.e. woody perennial shrubs, had the lowest SLA and the fast-growing perennial herbs, the highest, while woody semi-deciduous shrubs appeared intermediate. Decreases in RGR due to water stress were analysed in terms of the relative contribution of the leaf mass ratio (LMR), SLA and the net assimilation rate (NAR). Pooling all species, the decrease in RGR caused by water deficit was mainly explained by decreases in SLA. However, this general pattern was strongly dependent of growth form. Thus, in the woody perennial plants, the decrease in RGR was accompanied by a three-fold decrease in NAR which, however, increased in perennial herbs. SLA increased with decreasing water supply in woody perennial plants, and decreased in woody semi-deciduous shrubs and perennial herbs. Finally, decreases in LMR partly explained decreases in RGR in perennial herbs and woody perennial shrubs. This different response of the different growth forms may reflect differences in seedling adaptation and surviving strategies to drought periods.  相似文献   
977.
CLAVATA1 (CLV1) regulates stem cell accumulation at Arabidopsis shoot and flower meristems. CLV1 encodes a receptor-like kinase, but very little is known about downstream signaling components of receptor-kinase signaling in plants. poltergeist (pol) mutants suppress the accumulation of stem cells that occur in clv mutants, and POL has been hypothesized to modulate CLV1 signaling. The POL gene, which encodes a functional protein phosphatase type 2C, is a member of a six-gene family in Arabidopsis. We have isolated loss-of-function alleles for each of the five POL-like genes (PLL1-PLL5). All gene family members, with the exception of PLL3, are expressed broadly within the plant, albeit at differing levels. We show that PLL1 regulates meristem development in parallel with POL. We observe a strong dosage sensitivity at the meristem for POL and PLL1 function in both loss- and gain-of-function analyses, suggesting that these proteins are rate-limiting modulators of stem cell specification. PLL genes also function outside of the meristem: POL and PLL1 regulate pedicel length in interaction with ERECTA, while PLL4 and PLL5 regulate leaf development. We observed no developmental role for either PLL2 or PLL3 based on single and double mutant analysis.  相似文献   
978.
979.
Fricke W 《Planta》2004,219(3):507-514
Solutes distribute differentially between leaf tissues and cells. The present study tested the hypothesis that certain solutes are supplied preferentially to the epidermis in the transpiration stream, by-passing mesophyll cells along bundle sheath extensions. Using energy dispersive X-ray analysis of extracted cell sap, the distribution of solutes was studied in the emerged zone (transpiring) and the elongation zone (non-transpiring) of the developing leaf three of barley (Hordeum vulgare L.). The basic distribution of Cl, K, P and Ca between epidermis and bulk tissue, and between cells within the epidermis, was similar in the two leaf regions. However, in the emerged zone differences in solute concentrations between tissues and cells were greater. A local reduction in transpiration rate along the emerged portion of the blade specifically prevented Ca from accumulating to high levels in epidermal cells close to stomata. It is concluded that differences in solute concentrations between epidermal cells and other leaf tissues can be established in the absence of transpiration, but that they require transpiration for their full expression. Peristomatal transpiration appears to be responsible for high Ca in interstomatal cells.Abbreviations EDX-analysis Energy-dispersive X-ray analysis - IS-cell Interstomatal cell - R-cell Ridge cell - TR-cell Trough cell  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号