首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3640篇
  免费   262篇
  国内免费   208篇
  2024年   11篇
  2023年   45篇
  2022年   44篇
  2021年   68篇
  2020年   76篇
  2019年   71篇
  2018年   82篇
  2017年   82篇
  2016年   73篇
  2015年   98篇
  2014年   124篇
  2013年   143篇
  2012年   91篇
  2011年   114篇
  2010年   90篇
  2009年   188篇
  2008年   183篇
  2007年   183篇
  2006年   194篇
  2005年   170篇
  2004年   142篇
  2003年   134篇
  2002年   114篇
  2001年   104篇
  2000年   97篇
  1999年   115篇
  1998年   108篇
  1997年   95篇
  1996年   82篇
  1995年   81篇
  1994年   87篇
  1993年   76篇
  1992年   78篇
  1991年   76篇
  1990年   68篇
  1989年   52篇
  1988年   60篇
  1987年   56篇
  1986年   45篇
  1985年   43篇
  1984年   50篇
  1983年   14篇
  1982年   31篇
  1981年   51篇
  1980年   41篇
  1979年   33篇
  1978年   15篇
  1977年   23篇
  1976年   5篇
  1974年   2篇
排序方式: 共有4110条查询结果,搜索用时 320 毫秒
981.
Recent land-use changes in intensively managed forests such as Mediterranean coppice stands might profoundly alter their structure and function. We assessed how the abandonment of traditional management practices in coppice stands, which consisted of short cutting-cycles (10–15 years), has caused overaging (stems are usually much older than when they were coppiced) and altered their wood anatomy and hydraulic architecture. We studied the recent changes of wood anatomy, radial growth, and hydraulic architecture in two stands of Quercus pyrenaica, a transitional Mediterranean oak with ring-porous wood forming coppice stands in W–NW Spain. We selected a xeric and a mesic site because of their contrasting climates and disturbance histories. The xeric site experienced an intense defoliation after the severe 1993–1994 summer drought. The mesic site was thinned in late 1994. We studied the temporal variability in width, vessel number and diameter, and predicted the hydraulic conductivities (K h) of earlywood and latewood. In the mesic site, we estimated the vulnerability to xylem cavitation of earlywood vessels. Overaging caused a steep decline in latewood production at a cambial age of 14 years., which was close to the customary cutting cycle of Q. pyrenaica. The diameter distribution of vessels was bimodal, and latewood vessels only accounted for 4% of the K h. Overaging, acting as a predisposing factor in the decline episode, was observed at the xeric site, where most trees did not produce latewood in 1993–1995. At the mesic site, thinned trees formed wider tree-rings, more latewood and multiseriate tree-rings than overaged trees. The growth enhancement remained 8 years after thinning. Most of the hydraulic conductivity in earlywood was lost in a narrow range of potentials, between −2.5 and −3.5 MPa. We have shown how hydraulic conductivity and radial growth are closely related in Q. pyrenaica and how aging modulates this relationship.  相似文献   
982.
Conifer needles of different ages perform differently in ecophysiology. However, no study has investigated the biomass distribution of different-aged needles in a tree crown or/and a stand canopy. We carried out a study on young (∼50 years old) and old (∼200 years) Pinus cembra L. trees at highland (2100–2300 m a.s.l.) and lowland (570 m) sites in Switzerland. We found that both the young and the old trees living in the highlands had more needle biomass per tree than the same-aged trees of the same species living in the lowlands. This is mainly due to the greater longevity of needles in highland trees. It reflects the strategic responses of trees to low resource availability or high abiotic stress level. Having older needles increases the time that nutrients are resident in trees in less favorable environments, and compensates for shorter growing period in cold temperatures.  相似文献   
983.
Water relations and gas exchange were studied in the crowns of small European larch (Larix decidua Mill.) trees with respect to branch position. The upper-crown branches showed significantly higher branch sap flux rate (F la) and branch conductance (g b) compared to the lower crown (P<0.001). Values of leaf conductance (g l), transpiration rate (E) and net photosynthesis (A), averaged for different ranges of atmospheric vapour pressure deficit (VPD), were also higher in the upper crown position. We suppose that the up to 2.6-fold smaller soil-to-leaf hydraulic conductance observed in the lower branches (P<0.001, compared to upper branches) could contribute to the decreased values of F la, g b, g l, and E in the lower crown position. Variation in tracheid lumen diameter with respect to crown position (P<0.001) supported the hypothesis that branches growing at the crown base are hydraulically more constrained than branches located at the top of the tree. Leaf area to sapwood area ratio (A la/A sa) exhibited 1.4 times smaller values in lower crown (P<0.01), however, this could not compensate the effect of decreased hydraulic conductivity of the lower-crown branches.  相似文献   
984.
985.
The structure and late development of the flowers of the South‐East Asian bee‐pollinated palm Licuala peltata are described with special focus on the architecture of the unusual labyrinthine nectaries. The nectaries are derived from septal nectaries by extensive convolution of the carpel flank surfaces below the ovary throughout the inner floral base, thus also encompassing the inner surface of the corolla–androecium tube. A comparison with septal nectaries elsewhere in Arecaceae and with labyrinthine nectaries in other monocots shows that labyrinthine nectaries situated below the ovary, as described here, are not known from any other palms, but are similar to those of a few Bromeliaceae and, less strongly convoluted, some Haemodoraceae and Xanthorrhoeaceae. In addition, the substantial participation of parts other than the gynoecium in the nectary architecture of Licuala appears unique at the level of monocots. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 66–77.  相似文献   
986.
Leaf morphology and anatomy of Camellia section Camellia (Theaceae)   总被引:1,自引:0,他引:1  
The delimitations of species in Camellia section Camellia have been disputed for many years, resulting from uncertain relationships among species. Leaf morphological and anatomical characters for 54 species and three varieties in this section were investigated to reveal the relationships. Principal component analysis and cluster analysis were conducted using the transformed data for quantitative and qualitative characters from leaf morphology and anatomy. Combining the results of statistical analysis with comparative leaf characters of morphology and anatomy, we discussed the taxonomic treatment of section Camellia by Chang compared with that of Ming and we conclude that section Camellia consists of c. 50 species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 456–476.  相似文献   
987.
Grobya amherstiae flowers release a honey‐like scent produced by an osmophore, comprising a papillate epidermis. The scent attracts bee pollinators (Paratetrapedia fervida), which collect floral oils produced by elaiophores on the lip apex and column base. The secretory tissue of the elaiophore on the lip apex consists of both palisade‐like epidermal cells and conspicuously elongated unicellular trichomes. From an anatomical point of view, this elaiophore differs in structure from those known in angiosperms to date. The elaiophore on the column base is exclusively composed of short unicellular trichomes. In addition, there is an elaiophore comprising a papillate epidermis on the internal surface of the lip. The elaiophores produce a heterogeneous secretion, composed of fatty acids and mucilage. The elaiophore on the internal surface of the lip produces oil in non‐collectible amounts, but it is enough to maintain the interest of the bees, guiding them to the elaiophore on the column base, a necessary step in pollination. The former elaiophore is here identified as an oil guide and it plays an essential role in ensuring pollination. The presence of three types of elaiophores on the flowers of this species of Orchidaceae is peculiar and noteworthy. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 408–415.  相似文献   
988.
Ramularia collo-cygni causes leaf spots on barley (Hordeum vulgare), a disease of growing economical importance. Scanning electron microscopy was used to study the life cycle of the fungus on barley during the vegetation period and in winter. The infectious stage started with conidium germination on the surface and the penetration into the leaf via the stomatal pore where the hyphae grew within the cells that became necrotic. The conidiophores emerged through the stomatal pore. On older leaves, however, they frequently emerged apart from it and the results suggested a pushing apart of adjacent cell walls of the epidermal cells. An assessment of the amount of conidium formation of one heavily infested barley plant resulted in 4.05 × 106 conidia per plant. For the first time, conidiophores, conidium production and germination of conidia were also observed in winter on barley and on maize leaves.  相似文献   
989.
The impact of UV-B radiation on endogenous hormones in plants has recently drawn attention from researchers. The mechanism for reduced stem elongation by UV-B might be due to changes in the phytohormone levels, especially IAA, which plays a role in stem elongation. In this study, effects of UV-B radiation on Trichosanthes kirilowii Maxim (T. kirilowii) seedlings in greenhouse-grown plants were investigated. The results indicated that: (1) In comparison to controls, exposure to 0.029 Jm?2 s?1. UV-B radiation led to accumulation of endogenous abscisic acid (ABA) and zeatinriboside (ZR) in the plant contents, and decreased contents of endogenous indole-3-acetic acid (IAA) and gibberellic acid (GA1/3). Exposure to UV-B radiation reduced the height and leaf area of plants. As a result, total biomass (plant dry weight) was lower. (2) In comparison to controls, addition of 2 mg l?1 α-naphthaleneacetic acid (α-NAA) slightly increased the contents of IAA, GA1/3 and ZR, and decreased the content of ABA in leaves. This addition of α-NAA significantly increased plant height and leaf area, but only slightly increased total biomass. (3) Addition of α-NAA to UV-B-exposed plants: increased the content of endogenous IAA, GA1/3 and ZR; decreased accumulation of endogenous ABA; and increased plant height and leaf area in comparison to plants that only were exposed to UV-B. Moreover, total biomass increased slightly. This suggests that addition of α-NAA may compensate to a certain extent for the lack of IAA resulting from UV-B radiation; it also increases the content of GA1/3 and ZR, decreases the accumulation of ABA, and promotes the growth of plants.  相似文献   
990.
The present study investigated the allelopathic interference of leaf debris of Ageratum conyzoides (billy goat weed; Asteraceae)—a weed of cultivated land—against rice (Oryza sativa). Seedling length and dry weight of rice were significantly reduced (16–20%) in soil from A. conyzoides infested fields compared to the soil from an area devoid of the weed. It indicated the presence of certain phytotoxins in the A. conyzoides infested soil. To explore the possible contribution of the weed in releasing these phytotoxins, growth studies involving leaf debris extracts and amended soils (prepared by incorporating leaf debris—5, 10, 20 g kg−1 soil, w/w, or its extracts—0.5%, 1.0% and 2.0%, v/v) were conducted. The growth of rice was severely inhibited in A. conyzoides leaf debris- and debris extract-amended soils compared to unamended control soil. A significant amount of water-soluble phenolics, the potent phytotoxins, was found in the A. conyzoides infested soil, leaf debris, and debris-amended soils. These phenolics were identified as gallic acid, coumalic acid, protocatechuic acid, catechin and p-hydroxybenzoic acid. Among these, protocatechuic acid was in the maximum amount (35.72%) followed by coumalic acid (33.49%) and these two accounted for >69% of total phenolic compounds. Further, there was a significant increase in the available nutrient content in soil amended with A. conyzoides leaf debris thus ruling out the possibility of any resource depletion upon residue incorporation and their negative role in causing growth reduction. Based on the observations, the present study concludes that leaf debris of A. conyzoides deleteriously affects the early growth of rice by releasing water-soluble phenolic acids into the soil environment and not through soil nutrient depletion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号