首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   12篇
  国内免费   1篇
  2023年   6篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1979年   1篇
排序方式: 共有165条查询结果,搜索用时 125 毫秒
41.
采用细胞内微电极和双微电极电压箝制术观察缺血对绵羊心室浦肯野纤维跨膜电位和起搏离子流(If)的影响。结果:模拟缺血液灌流30min,浦肯野纤维最大舒张电位(MDP)、动作电位幅度(APA)明显减少;动作电位时程APD50,APD90明显缩短(n=15P<0.01);起搏离子流(If),幅度降低,激活曲线向超极化方向移位,最大激活时间及半最大激活时间延长(n=13P<0.001)。上述结果表明:心肌缺血时,心室浦肯野细胞跨膜电位及正常起搏活动不是增强,而是减弱。提示缺血性室性心律失常不是由于正常心室自律活动异常增强引起  相似文献   
42.
Whole-cell patch recording techniques were used to analyze spontaneous electrical activity in cerebellar Purkinje cells acutely isolated from postnatal rats. Spontaneous activity was present in 65% of the cells examined, and it included simple and complex firing patterns which persisted under conditions that eliminated residual or reformed synaptic contacts. Under voltage clamp, both spontaneous and quiescent cells displayed similar voltage-dependent conductances. Inward current was carried by Na+ through tetrodotoxin (TTX)-sensitive channels and by Ca2+ through P-type and T-type Ca channels. P-type current was present in all cells examined. T-type current was found in <50%, and it did not correlate with spontaneous activity. We found no evidence of a transient (A-type) potassium current or hyperpolarization-activated cationic current in either spontaneous or quiescent cells. Spontaneous activity did correlate with a lower activation threshold of the Na current, resulting in substantial overlap of the activation and inactivation curves. TTX reduced the holding current of spontaneous cells clamped between −50 and −30 mV, consistent with the presence of a Na "window" current. We were unable, however, to measure a persistent component of the Na current using voltage steps, a result which may reflect the complex gating properties of Na channels. An Na window current could provide the driving force underlying spontaneous activity, as well as plateau potentials, in Purkinje cells. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 18–32, 1997  相似文献   
43.
Each eye of Aplysia contains a circadian clock that produces a robust rhythm of optic nerve impulse activity. To isolate the pacemaker neurons and photoreceptors of the eye and determine their participation in the circadian clock and its generation of rhythmic autoactivity, the retina was dissociated and its cells were placed in primary cell culture. The isolated neurons and photoreceptors survived and vigorously extended neurites tipped with growth cones. Many of the photoreceptors previously described from histological sections of the intact retina were identified in culture, including the large R-type photoreceptor, which gave robust photoresponses, and the smaller tufted, whorled, and flared photoreceptors. The pacemaker neurons responsible for the rhythmic impulse activity generated by the eye were identified by their distinctive monopolar morphology and recordings were made of their activity. Isolated pacemaker neurons produced spontaneous action potentials in darkness, and pacemaker neurons attached to fragments of retina or in an isolated cluster interacted to produce robust spontaneous activity. This study establishes that isolated retinal pacemaker neurons retain their innate autoactivity and ability to produce action potentials in culture and that clusters of coupled pacemaker neurons are capable of generating robust autoactivity comparable to pacemaker neuron rhythmic activity recorded in the intact retina, which was previously shown to correspond to 1:1 with the optic nerve compound action potential activity. © 1996 John Wiley & Sons, Inc.  相似文献   
44.
In mammals, a major circadian pacemaker is located in the suprachiasmatic nuclei (SCN), at the base of the anterior hypothalamus. The pacemaker controls daily rhythms in behavioral, physiological and endocrine functions and is synchronized to the external light-dark cycle via the retinohypothalamic tract. The SCN are also involved in photoperiodic processes. Changes in day-length are perceived by the SCN, and result in a compression or decompression of the SCN ensemble pattern, which appears to be effectuated by changes in phase relationship among oscillating neurons. By simulation experiments, we have previously shown that the duration of the single unit activity pattern is of minor importance for the broadness of the population activity peak. Instead, the phase distribution among neurons is leading to substantial differences in the broadness of the population pattern. We now show that the combination of (i) changes in the single unit activity pattern and (ii) changes in the phase distribution among oscillating neurons is also effective to encode photoperiodic information. Moreover, we simulated the ensemble waveform of the SCN with recently recorded single unit electrical activity patterns of mice under long and short photoperiods. We show that these single unit activity patterns cannot account for changes in the population waveform of the SCN unless their phase distribution is changed. A narrow distribution encodes for short photoperiods, while a wider distribution is required to encode long photoperiods. The present studies show that recorded patterns in single unit activity rhythms, measured under long and short day conditions, can be used in simulation experiments and are informative in showing which attributes of the neuronal discharge patterns leads to the capacity of the SCN to encode photoperiod.  相似文献   
45.
A 65-year-old man was scheduled for pacemaker implantation for symptomatic sick-sinus-syndrome (SSS). He suffered from multiple drug-allergies and allergies to several metals like quicksilver and titanium. Gold-coated pacemaker generators and polyurethane leads are effective in avoiding allergic reactions to pacing system components. Therefore, we decided to implant a custom-made gold-coated DDDR-pacemaker generator and polyurethane leads.  相似文献   
46.
We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps. We demonstrate that the work done by the pumps equals the change in potential energy of the cell, plus the energy lost in downhill ionic fluxes through the channels and exchangers. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The model predicts the experimentally observed intracellular ionic concentration of potassium, calcium and sodium. Likewise, the shapes of the simulated action potential and five membrane currents are in good agreement with experiment. We do not see any drift in the values of the concentrations in a long time simulation, and we obtain the same asymptotic values when starting from the full equilibrium situation with equal intracellular and extracellular ionic concentrations. Received: 9 December 1998 / Revised version: 30 August 1999 / Accepted: 15 October 1999  相似文献   
47.
Integrated allosteric model of voltage gating of HCN channels   总被引:8,自引:0,他引:8  
Hyperpolarization-activated (pacemaker) channels are dually gated by negative voltage and intracellular cAMP. Kinetics of native cardiac f-channels are not compatible with HH gating, and require closed/open multistate models. We verified that members of the HCN channel family (mHCN1, hHCN2, hHCN4) also have properties not complying with HH gating, such as sigmoidal activation and deactivation, activation deviating from fixed power of an exponential, removal of activation "delay" by preconditioning hyperpolarization. Previous work on native channels has indicated that the shifting action of cAMP on the open probability (Po) curve can be accounted for by an allosteric model, whereby cAMP binds more favorably to open than closed channels. We therefore asked whether not only cAMP-dependent, but also voltage-dependent gating of hyperpolarization-activated channels could be explained by an allosteric model. We hypothesized that HCN channels are tetramers and that each subunit comprises a voltage sensor moving between "reluctant" and "willing" states, whereas voltage sensors are independently gated by voltage, channel closed/open transitions occur allosterically. These hypotheses led to a multistate scheme comprising five open and five closed channel states. We estimated model rate constants by fitting first activation delay curves and single exponential time constant curves, and then individual activation/deactivation traces. By simply using different sets of rate constants, the model accounts for qualitative and quantitative aspects of voltage gating of all three HCN isoforms investigated, and allows an interpretation of the different kinetic properties of different isoforms. For example, faster kinetics of HCN1 relative to HCN2/HCN4 are attributable to higher HCN1 voltage sensors' rates and looser voltage-independent interactions between subunits in closed/open transitions. It also accounts for experimental evidence that reduction of sensors' positive charge leads to negative voltage shifts of Po curve, with little change of curve slope. HCN voltage gating thus involves two processes: voltage sensor gating and allosteric opening/closing.  相似文献   
48.
Swim pacemakers in box jellyfish are modulated by the visual input   总被引:1,自引:0,他引:1  
A major part of the cubozoan central nervous system is situated in the eye-bearing rhopalia. One of the neuronal output channels from the rhopalia carries a swim pacemaker signal, which has a one-to-one relation with the swim contractions of the bell shaped body. Given the advanced visual system of box jellyfish and that the pacemaker signal originates in the vicinity of these eyes, it seems logical to assume that the pacemakers are modified by the visual input. Here, the firing frequency and distribution of inter-signal intervals (ISIs) of single pacemakers are examined in the Caribbean box jellyfish, Tripedalia cystophora. It is shown that the absolute ambient light intensity, if kept constant, has no influence on the signal, but if the intensity changes, it has a major impact on both frequency and ISIs. If the intensity suddenly drops there is an increase in firing frequency, and the ISIs become more homogeneously distributed. A rise in intensity, on the other hand, produces a steep decline in the frequency and makes the ISIs highly variable. These electrophysiological data are correlated with behavioral observations from the natural habitat of the medusae.  相似文献   
49.
Kim BJ  Nam JH  Kim SJ 《Molecules and cells》2011,32(2):153-160
The interstitial cells of Cajal (ICCs) are pacemakers in the gastrointestinal tract and transient receptor potential melastatin type 7 (TRPM7) is a candidate for pacemaker channels. The effect of the 5-lipoxygenase (5-LOX) inhibitors NDGA, AA861, MK886 and zileuton on pacemaking activity of ICCs was examined using the whole cell patch clamp technique. NDGA and AA861 decreased the amplitude of pacemaker potentials in ICC clusters, but the resting membrane potentials displayed little change, respectively. Also, perfusing NDGA and AA861 into the bath reduced both inward current and outward current in TRPM7-like current in single ICC, respectively. But, they had no effects on Ca2+ activated Cl currents. The 5-LOX inhibitors MK886 and zileuton were, however, ineffective in pacemaker potentials in ICC clusters and in TRPM7-like current in single ICC, respectively. A specific TRPC3 inhibitor, pyrazole compound (Pyr3), and a specific TRPM4 inhibitor, 9-phenanthrol, had no effects in pacemaker potentials in ICC clusters and in TRPM7-like current in single ICC. These results suggest that, among the tested 5-LOX inhibitors, NDGA and AA861 modulate the pacemaker activities of the ICCs, and that the TRPM7 channel can affect intestinal motility.  相似文献   
50.
This study examines the Cav1 isoforms expressed in mouse chromaffin cells and compares their biophysical properties and roles played in cell excitability and exocytosis. Using immunocytochemical and electrophysiological techniques in mice lacking the Cav1.3α1 subunit (Cav1.3(-/-) ) or the high sensitivity of Cav1.2α1 subunits to dihydropyridines, Cav1.2 and Cav1.3 channels were identified as the only Cav1 channel subtypes expressed in mouse chromaffin cells. Cav1.3 channels were activated at more negative membrane potentials and inactivated more slowly than Cav1.2 channels. Cav1 channels, mainly Cav1.2, control cell excitability by functional coupling to BK channels, revealed by nifedipine blockade of BK channels in wild type (WT) and Cav1.3(-/-) cells (53% and 35%, respectively), and by the identical change in the shape of the spontaneous action potentials elicited by the dihydropyridine in both strains of mice. Cav1.2 channels also play a major role in spontaneous action potential firing, supported by the following evidence: (i) a similar percentage of WT and Cav1.3(-/-) cells fired spontaneous action potentials; (ii) firing frequency did not vary between WT and Cav1.3(-/-) cells; (iii) mostly Cav1.2 channels contributed to the inward current preceding the action potential threshold; and (iv) in the presence of tetrodotoxin, WT or Cav1.3(-/-) cells exhibited spontaneous oscillatory activity, which was fully abolished by nifedipine perfusion. Finally, Cav1.2 and Cav1.3 channels were essential for controlling the exocytotic process at potentials above and below -10 mV, respectively. Our data reveal the key yet differential roles of Cav1.2 and Cav1.3 channels in mediating action potential firing and exocytotic events in the neuroendocrine chromaffin cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号