首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   86篇
  国内免费   18篇
  1013篇
  2024年   1篇
  2023年   15篇
  2022年   18篇
  2021年   24篇
  2020年   15篇
  2019年   14篇
  2018年   12篇
  2017年   36篇
  2016年   28篇
  2015年   45篇
  2014年   60篇
  2013年   68篇
  2012年   42篇
  2011年   54篇
  2010年   34篇
  2009年   36篇
  2008年   53篇
  2007年   45篇
  2006年   49篇
  2005年   36篇
  2004年   23篇
  2003年   20篇
  2002年   25篇
  2001年   15篇
  2000年   19篇
  1999年   34篇
  1998年   25篇
  1997年   28篇
  1996年   12篇
  1995年   21篇
  1994年   24篇
  1993年   38篇
  1992年   11篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有1013条查询结果,搜索用时 15 毫秒
41.
Climate changes on various time scales often shape genetic novelty and adaptive variation in many biotas. We explored molecular signatures of directional selection in populations of the ice goby Leucopsarion petersii inhabiting a unique sea basin, the Sea of Japan, where a wide variety of environments existed in the Pleistocene in relation to shifts in sea level by repeated glaciations. This species consisted of two historically allopatric lineages, the Japan Sea (JS) and Pacific Ocean (PO) lineages, and these have lived under contrasting marine environments that are expected to have imposed different selection regimes caused by past climatic and current oceanographic factors. We applied a limited genome‐scan approach using seven candidate genes for phenotypic differences between two lineages in combination with 100 anonymous microsatellite loci. Neuropeptide Y (NPY) gene, which is an important regulator of food intake and potent orexigenic agent, and three anonymous microsatellites were identified as robust outliers, that is, candidate loci potentially under directional selection, by multiple divergence‐ and diversity‐based outlier tests in comparisons focused on multiple populations of the JS vs. PO lineages. For these outlier loci, populations of the JS lineage had putative signals of selective sweeps. Additionally, real‐time quantitative PCR analysis using fish reared in a common environment showed a higher expression level for NPY gene in the JS lineage. Thus, this study succeeded in identifying candidate genomic regions under selection across populations of the JS lineage and provided evidence for lineage‐specific adaptive evolution in this unique sea basin.  相似文献   
42.
Identifying local adaptation is crucial in conservation biology to define ecotypes and establish management guidelines. Local adaptation is often inferred from the detection of loci showing a high differentiation between populations, the so‐called FST outliers. Methods of detection of loci under selection are reputed to be robust in most spatial population models. However, using simulations we showed that FST outlier tests provided a high rate of false‐positives (up to 60%) in fractal environments such as river networks. Surprisingly, the number of sampled demes was correlated with parameters of population genetic structure, such as the variance of FSTs, and hence strongly influenced the rate of outliers. This unappreciated property of river networks therefore needs to be accounted for in genetic studies on adaptation and conservation of river organisms.  相似文献   
43.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   
44.
The gills of euryhaline fish are the ultimate ionoregulatory tissue, achieving ion homeostasis despite rapid and significant changes in external salinity. Cellular handling of sodium is not only critical for salt and water balance but is also directly linked to other essential functions such as acid–base homeostasis and nitrogen excretion. However, although measurement of intracellular sodium ([Na+]i) is important for an understanding of gill transport function, it is challenging and subject to methodological artifacts. Using gill filaments from a model euryhaline fish, inanga (Galaxias maculatus), the suitability of the fluorescent dye CoroNa Green as a probe for measuring [Na+]i in intact ionocytes was confirmed via confocal microscopy. Cell viability was verified, optimal dye loading parameters were determined, and the dye–ion dissociation constant was measured. Application of the technique to freshwater- and 100% seawater-acclimated inanga showed salinity-dependent changes in branchial [Na+]i, whereas no significant differences in branchial [Na+]i were determined in 50% seawater-acclimated fish. This technique facilitates the examination of real-time changes in gill [Na+]i in response to environmental factors and may offer significant insight into key homeostatic functions associated with the fish gill and the principles of sodium ion transport in other tissues and organisms.  相似文献   
45.
46.
目的:通过对一例肺鳞癌患者全外显子测序来识别这例肺癌的可能致病基因,并通过显微切割初步探索这例肺癌肿瘤细胞的起源与演化。方法:利用全外显子测序技术对肺癌肿瘤组织和相应癌旁组织测序;用COSMIC肿瘤数据库比较分析统计出肺癌可能致病基因;用激光显微切割技术提取五个不同部位肿瘤细胞;巢式PCR扩增,一代测序验证基因分型。结果:发现了这例肺癌病人的7个高频突变基因:LPHN2、TP53、MYH2、TGM2、C10orf137、MS4A3和EP300;这些基因在10×镜下和20×镜下经显微切割的肺癌组织的5个不同部位上的基因分型不同。结论:我们通过全外显子测序发现了这例肺癌的7个可能致病基因,并初步探索了这例肺癌肿瘤细胞是多克隆起源的。  相似文献   
47.
目的:探讨不同能量CO_2点阵激光对博莱霉素诱导的小鼠增生性瘢痕模型的作用及其对瘢痕组织中Hedgehog信号通路的影响。方法:于雄性C57BL/6J小鼠背部皮肤注射博来霉素(1 mg/d,4周)制作增生性瘢痕模型,另取4只小鼠背部注射PBS缓冲液作为对照。造模成功之后,随机将小鼠分为瘢痕对照组(模型组),10 mj激光治疗组(10 mj组)和20 mj激光治疗组(20 mj组),每组6只小鼠。10 mj组小鼠给予10 mj激光治疗(共3次,每次间隔2周);20 mj组小鼠给予20 mj激光治疗(共3次,每次间隔2周)。治疗结束后,处死小鼠,取瘢痕全层标本进行病理组织学染色观察(HE、Masson染色)以及α-平滑肌肌动蛋白(α-SMA)、GLi1免疫荧光观察。结果:①我们成功复制出小鼠增生性瘢痕模型;②20 mj CO_2点阵激光治疗可有效修复瘢痕组织,经治疗后皮肤瘢痕程度显著减轻,同时可降低真皮层厚度和减轻瘢痕组织的纤维化程度;③免疫荧光染色结果提示,CO_2点阵激光可显著减少小鼠皮肤增生性瘢痕中α-SMA、GLi1表达。结论:于小鼠的背部皮肤注射博莱霉素可建立增生性瘢痕模型。CO_2点阵激光为治疗增生性瘢一种有效的治疗方式,其作用可能与其对Hedgehog信号通路的抑制有关。  相似文献   
48.
准分子激光双面式切削原位角膜磨镶术(Both-sided LASIK,BSL)是准分子激光原位角膜磨镶术(laser in situ keratomileusis, LASIK)的改良,BSL将部分激光切削分布在角膜瓣基质面,因而减少了对角膜基质床的切削,最大限度的保留了角膜基质床的剩余厚度,为降低术后角膜膨出提供可能,对屈光度相对偏高和/或角膜相对偏薄的患者,尽量增加手术的安全性,并为LASIK术后屈光回退的增强手术提供了一种新的方法。本文对近年BSL的研究进展作一综述。  相似文献   
49.
The appaloosa coat colour pattern of the horse is similar to that caused by the rump-white (Rw) gene in the mouse. In the mouse Rw colour pattern is the result of an inversion involving the proto-oncogene c-kit (KIT). Therefore, we investigated KIT as a candidate gene that encodes the appaloosa coat colour gene (Lp) in horses. KIT plays a critical role in haematopoiesis, gametogenesis, and melanogenesis and encodes a transmembrane tyrosine kinase receptor that belongs to the PDGF/CSF-1/c-KIT receptor subfamily. Half-sib families segregating for Lp were uninformative for a reported polymorphism in KIT. However, KIT is located on horse chromosome 3 close to albumin (ALB), serum carboxylesterase (ES), vitamin D-binding protein (GC) and microsatellite markers ASB23, LEX007, LEX57, and UCDEQ437. Indeed, KIT and ASB23 were localized to ECA3q21-22.1 and 3q22.1-22.3, respectively, by fluorescent in situ hybridization. Family studies were conducted to investigate linkage of Lp to these markers using eight half-sib families in which Appaloosa stallions were mated to solid coloured mares. Linkage of Lp to the chromosome region containing ES, ALB, GC, ASB23, UCDEQ437, LEX57, and LEX007 was investigated by a multipoint linkage analysis using the computer program GENEHUNTER. LOD scores over the interval under investigation ranged from -4.28 to -12.48, with a score of -12.48 at the location for ASB23. Therefore, it was concluded that appaloosa (Lp) is not linked to any of the tested markers on ECA3, and thus Lp is unlikely to be the product of KIT.  相似文献   
50.
Assignment of the appaloosa coat colour gene (LP) to equine chromosome 1   总被引:1,自引:0,他引:1  
A single autosomal dominant locus, leopard complex (LP) controls the presence of appaloosa pigmentation patterns in the horse. The causative gene for LP is unknown. This study was undertaken to map LP in the horse. Two paternal half sib families segregating for the LP locus and including a total of 47 offspring were used to perform a genome scan which localized LP to horse chromosome 1 (ECA1). LP was linked to ASB08 (LOD = 9.99 at Theta = 0.02) and AHT21 (LOD = 5.03 at Theta = 0.14). To refine the map position of LP, eight microsatellite markers on ECA1 (UM041, LEX77, 1CA41, TKY374, COR046, 1CA32, 1CA43, and TKY002) were analysed in the two half sib families. Results from this linkage analysis showed LP was located in the interval between ASB08 and 1CA43. Tight junction protein (TJP1), which lies within the LP interval on ECA1, was used to determine the homologous chromosomes in humans (HSA15) and mice (mouse chromosome 7). We propose that the pink eyed dilution (p) gene and transient receptor potential cation channel subfamily M, member 1 (TRPM1) are positional candidate genes for LP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号