首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   223篇
  国内免费   278篇
  1954篇
  2024年   7篇
  2023年   45篇
  2022年   42篇
  2021年   75篇
  2020年   80篇
  2019年   104篇
  2018年   89篇
  2017年   122篇
  2016年   112篇
  2015年   113篇
  2014年   98篇
  2013年   77篇
  2012年   82篇
  2011年   68篇
  2010年   56篇
  2009年   97篇
  2008年   102篇
  2007年   90篇
  2006年   77篇
  2005年   94篇
  2004年   61篇
  2003年   45篇
  2002年   40篇
  2001年   24篇
  2000年   29篇
  1999年   18篇
  1998年   16篇
  1997年   12篇
  1996年   16篇
  1995年   13篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
排序方式: 共有1954条查询结果,搜索用时 0 毫秒
101.
Landscape heterogeneity is a major driver of biodiversity in agricultural areas and represents an important parameter in conservation strategies. However, most landscape ecology studies measure gamma diversity of a single habitat type, despite the assessment of multiple habitats at a landscape scale being more appropriate. This study aimed to determine the effects of landscape composition and spatial configuration on life-history trait distribution in carabid beetle and herbaceous plant communities. Here, we assessed the gamma diversity of carabid beetles and plants by sampling three dominant habitats (woody habitats, grasslands and crops) across 20 landscapes in western France. RLQ and Fourth Corner three-table analyses were used to assess the association of dispersal, phenology, reproduction and trophic level traits with landscape characteristics. Landscape composition and configuration were both significant in explaining functional composition. Carabid beetles and plants showed similar response regarding phenology, i.e. open landscapes were associated with earlier breeding species. Carabid beetle dispersal traits exhibited the strongest relationship with landscape structure; for instance, large and apterous species preferentially inhabited woody landscapes, whereas small and macropterous species preferentially inhabited open landscapes. Heavy seeded plant species dominated in intensified agricultural landscapes (high % crops), possibly due to the removal of weeds (which are usually lightweight seeded species). The results of this study emphasise the roles of landscape composition and configuration as ecological filters and the importance of preserving a range of landscape types to maintain functional biodiversity at regional scales.  相似文献   
102.
Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible.  相似文献   
103.
The spiny damselfish, Acanthochromis polyacanthus, is widely distributed throughout the Indo‐Australian archipelago. However, this species lacks a larval dispersal stage and shows genetic differentiation between populations from closely spaced reefs. To investigate the dispersal strategy of this unique species, we used microsatellite markers to determine genetic relatedness at five dispersal scales: within broods of juveniles, between adults within a collection site (~30 m2), between sites on single reefs, between nearby reefs in a reef cluster, and between reef clusters. We sampled broods of juveniles and adults from seven reefs in the Capricorn‐Bunker and Swain groups of the Great Barrier Reef. We found that extra‐pair mating is rare and juveniles remain with their parents until fledged. Adults from single sites are less related than broods but more related than expected by chance. However, there is no evidence of inbreeding suggesting the existence of assortative mating and/or adult migration. Genetic differences were found between all of the reefs tested except between Heron and Sykes reefs, which are separated only by a 2‐km area of shallow water (less than 10 m). There was a strong correlation between genetic distance, geographical distance and water depth. Apparently, under present‐day conditions spiny damselfish populations are connected only between sites of shallow water, through dispersal of adults over short distances. Assuming that dispersal behaviour has not changed, the broad distribution of A. polyacanthus as a species is likely based on historical colonization patterns when reefs were connected by shallow water at times of lower sea levels.  相似文献   
104.
In the Barwon River, Australia, a tidal barrage formed a major impediment to fish movement so in 2013 a vertical slot fishway was installed. The assessment of fishways on tidal barriers is rare in Australia so to ensure the fishway was achieving its ecological objective (i.e. successfully passing the target size range of fish of 20–400 mm total length), fish were trapped at the entrance and exit on 12 occasions and the species composition, abundance and length of fish at the two locations were compared. Additionally, a section of the river downstream of the fishway was sampled to ensure fishway trapping accurately reflected the species composition wanting to use the fishway to move upstream. Eighteen species and 69,246 individual fish were caught in the fishway traps. Catch rates between locations did not differ for Common Galaxias (Galaxias maculatus) or Australian Smelt (Retropinna semoni), although species‐specific catch rates were lower at the exit for Flat‐headed Gudgeon (Philypnodon grandiceps), Tupong (Pseudaphritis urvillii) and Yellow‐eye Mullet (Aldrichetta forsteri). Length distribution between locations only differed for Australian Smelt with small fish under‐represented at the exit location (<25 mm total length). Eight species of fish were collected downstream of the fishway that were not collected in it; however, all of these were estuarine dependent except the non‐native Common Carp (Cyprinus carpio). Our results indicate that vertical slot fishways are a suitable design for improving river connectivity at a low head, tidal barrages in south‐eastern Australia. The study reiterates the importance of reinstating connectivity for species with obligate marine/freshwater migratory life history traits, and the indirect benefits of increased productivity made available to upstream areas.  相似文献   
105.
The alteration of natural tree species composition is defined as the deviation of the current tree species composition from that of the natural state. It can be used as a measure of human influence on forest vegetation, and thus as an indicator of the naturalness of forest vegetation. The aim of the study was to develop a standard procedure for estimating the alteration of natural tree species composition, to explain factors driving alteration and to examine its significance for susceptibility of forest stands to natural disturbances. The alteration of natural tree species composition was estimated for the Dinaric region (5556 km2, Slovenia) by the Robič Index of Dissimilarity (RID), ranging from 0 (completely natural) to 100 (completely altered). The index was calculated on the compartment level (24 ha each on average) with data on current and potential natural forest vegetation. The influence of human activities on tree species alteration was examined by using topographic and accessibility variables. The susceptibility of forest stands to natural disturbances was analysed with data on sanitary felling. In the study area, the natural tree species composition of forest stands is moderately preserved; the average value of RID was 50.05, ranging from 1.76 to 100, and the coefficient of variation was 0.49. The alteration of the natural tree species composition of forest stands is primarily the result of forest management and past land use, conditioned either by topography or accessibility of forests. The degree of alteration of tree species composition decreased along the gradients of rockiness, inclination and elevation. A greater degree of alteration appeared on the slopes of intermediate and south facing aspects than on north facing slopes, and in areas that were closer to the forest edge. A higher level of alteration significantly increases the susceptibility of forest stands to natural disturbances. The procedure represents a novel approach in modelling the alteration (naturalness) of tree species composition of forest vegetation. It is applicable at different spatial scales and fosters an understanding of the patterns of tree species composition under the influence of human activity across forest landscapes.  相似文献   
106.
Sea turtles are marine reptiles that undertake long migrations through their life, with limited information regarding juvenile stages. Feeding grounds (FGs), where they spend most of their lives, are composed by individuals from different natal origins, known as mixed stock populations. The aim of this study was to assess genetic composition, natal origins and demographic history of juvenile green turtles (Chelonia mydas) at the Paranaguá Estuarine Complex (PEC), Brazil, considered a Natural World Heritage site. Tissue samples of stranded animals were collected (n = 60), and 700 bp mitochondrial DNA sequences were generated and compared to shorter sequences from previously published studies. Global exact tests of differentiation revealed significant differences among PEC and the other FGs, except those at the South Atlantic Ocean. Green turtles at PEC present genetic signatures similar to those of nesting females from Ascension Island, Guinea Bissau and Aves Island/Surinam. Population expansion was evidenced to have occurred 20–25 kYA, reinforcing the hypothesis of recovery from Southern Atlantic refugia after the last Glacial Maximum. These results contribute to a better understanding of the dynamics of green turtle populations at a protected area by providing knowledge on the dispersion patterns and reinforcing the importance of the interconnectivity between nesting and foraging populations.  相似文献   
107.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   
108.
109.
Near‐infrared diffuse correlation spectroscopy (DCS) is used to record spontaneous cerebral blood flow fluctuations in the frontal cortex. Nine adult subjects participated in the experiments, in which 8‐minute spontaneous fluctuations were simultaneously recorded from the left and right dorsolateral and inferior frontal regions. Resting‐state functional connectivity (RSFC) was measured by the temporal correlation of the low frequency fluctuations. Our data shows the RSFC within the dorsolateral region is significantly stronger than that between the inferior and dorsolateral regions, in line with previous observations with functional near‐infrared spectroscopy. This indicates that DCS is capable of investigating brain functional connectivity in terms of cerebral blood flow.   相似文献   
110.
Species distribution models can be informative of the biodiversity impacts of changing environments at global, national, and regional scales, but are often constrained in their resolution to extents not relevant to individual, intensive ecological management programs. We constructed a high‐resolution topoclimatic model of spring and summer temperatures across a 152 km2 restoration area on the Swan Coastal Plain, Western Australia, and used it to project energetic expenditure and habitat suitability estimates for four major hymenopteran pollinators. For all species, the most heavily modified landscapes were the least suitable, but only for one species, Zapsilothynnus nigripes, was there evidence that the upper thermal tolerance threshold was exceeded broadly. However, at the higher environmental temperatures that we modeled, some species would need to forage up to 10 times their own body mass every hour to meet their energetic requirements. It seems unlikely that the nutritional requirements of most insect pollinators operating at these higher metabolic rates could be met in an impoverished restoration ecosystem, although resource availability remains to be quantified in these habitats. Hence, to increase the likelihood of restoration success by restoring insect pollination networks, nutritional resources may need to be increased during restoration. Accounting for the way that thermoenergetic requirements shape ecological interactions better positions management trajectories aimed at restoring and maintaining key insect pollinators in “novel” ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号