首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2461篇
  免费   65篇
  国内免费   142篇
  2023年   11篇
  2022年   19篇
  2021年   30篇
  2020年   26篇
  2019年   41篇
  2018年   34篇
  2017年   33篇
  2016年   45篇
  2015年   51篇
  2014年   68篇
  2013年   92篇
  2012年   47篇
  2011年   82篇
  2010年   56篇
  2009年   90篇
  2008年   103篇
  2007年   91篇
  2006年   106篇
  2005年   118篇
  2004年   103篇
  2003年   89篇
  2002年   83篇
  2001年   86篇
  2000年   63篇
  1999年   75篇
  1998年   75篇
  1997年   67篇
  1996年   57篇
  1995年   70篇
  1994年   56篇
  1993年   69篇
  1992年   62篇
  1991年   55篇
  1990年   47篇
  1989年   56篇
  1988年   44篇
  1987年   46篇
  1986年   46篇
  1985年   32篇
  1984年   49篇
  1983年   39篇
  1982年   38篇
  1981年   29篇
  1980年   27篇
  1979年   26篇
  1978年   12篇
  1977年   11篇
  1976年   7篇
  1975年   2篇
  1973年   3篇
排序方式: 共有2668条查询结果,搜索用时 15 毫秒
121.
Diapause in a New Zealand strain of codling moth (Cydia pomonella Linnaeus [Lepidoptera: Olethreutidae]) was induced in larvae by photoperiods of 15 h or less. Once diapause had been initiated, it could not be terminated by any combination of conditions tested for at least 20 days after cocooning. In diapausing larvae a low rate of pupation occurred at 25 °C under a long day (18 h) photoperiod. A high rate of pupation was achieved under a long day regime when larvae were decocooned, and provided with apple as nourishment. Diapause could be terminated predictably in 94–100% of larvae by 1) conditioning at 15 °C and constant darkness for periods of 40–100 days, then 2) chilling at 2±2 °C and constant darkness for 20–50 days followed by 3) any post-chill condition periods at 25 °C, 18 h photoperiod. Complete diapause termination was achieved when 100 days conditioning was followed by 30 days or 50 days post-chill period. Under these conditions, 76% termination occurred in the post-chill period after 10 days, and 93% after 25 days.To terminate diapause in codling moth larvae, we recommend that a 100 days conditioning followed by 30 days chilling and 50 days post chilling periods be used.  相似文献   
122.
γ-Glutamyltransferase activity was detected in the plasma membrane of the highly differentiated hepatoma cell line Fao, (0.93 mU/mg cell protein). Dexamethasone (1 μM) provoked a 2–3-fold increase in the activity of the enzyme in the presence of fetal calf serum. Maximal induction occurred 48–72 h after addition of the glucocorticoid to the cell culture medium. The hormonal specificity was demonstrated by the relative potencies of several glucocorticoids and sex steroids: hydrocortisone and corticosterone increased γ-glutamyltransferase activity while tetrahydrocorticosterone and all sex steroids tested were ineffective. The effect of dexamethasone on γ-glutamyltransferase activity was specific since the activities of several other plasma membrane enzymes were not modified. The mechanism of the dexamethasone-induced increase in γ-glutamyltransferase activity was neither by modification of the affinity of the enzyme for its substrates nor by alteration of the subcellular distribution of the enzyme. This increase was prevented by cycloheximide and actinomycin D. The data presented are consistent with a specific glucocorticoid receptor-mediated induction of γ-glutamyltransferase activity in Fao cells. The kinetic parameters of the induction process by glucocorticoids are very similar to those found in adult rat liver. These results suggest that the Fao cell line is a very convenient system for the study of the molecular mechanisms of glucocorticoid effects on differentiated cells.  相似文献   
123.
Vitamin D-deficiency and rickets was produced in growing chicks. The resulting decrese in mineralization of whole bone and of fractions separated by density centrifugation was accompanied by a very significant decrease in the contents of O-phosphoserine and O-phosphothreonine. Likewise, the total amount of O-phosphoserine and O-phosphothreonine and the concentrations of these phosphoamino acids in EDTA extracts and in fractions obtained by molecular sieving was also reduced. These data provide the first in vivo evidence that phosphoproteins may be critically involved in the calcification of bone.  相似文献   
124.
In secondary leaves from spinach plants pretreated in vermiculite for 24 h with 300 mM NaCl, glycinebetaine accumulated at a rate of circa 0.16 mol 100 g-1 Chl d-1 (2 mol g-1 FW d-1), about three times the rate of control plants. The soluble carbohydrate and free amino acid contents did not increase significantly following salinisation until after 4 d when the relative growth rate also decreased. Leaf proline levels remained very low throughout the experimental period. K+ on a tissue water basis remained constant at 200 mM while Cl- and Na+ levels increased linearly to reach 175 and 100 mM respectively after 5 d of saline treatment. The osmotic pressure of leaf tissue also increased from 300 to 500 mosmol kg-1. These experimental conditions were considered suitable to study glycinebetaine biosynthesis and its induction by salinity in the absence of marked growth inhibition or metabolic disturbance. Radioactive labelled [14C]serine, ethanolamine and choline (all 1 mol, 13.3 MBq in 10 l) were fed to detached secondary leaves via the petiole 24 h after the exposure of plants to salt. The rate of isotope incorporation into water soluble products, lipids and residue was measured over a further 24 h. The major metabolic fate of exogenous [14C]choline and [14C]ethanolamine was incorporation into glycinebetaine while less 14C-label was found in phosphatidyl choline and phosphatidyl ethanolamine. Incorporation rates were identical in control and salinised leaves and were adequate to account for observed values of glycinebetaine accumulation previously reported in spinach. In contrast the labelling of glycinebetaine from [14C]serine was twice as great in salinated plants as in the controls. These results, together with short term labelling experiment with [14C]ethanolamine using leaf slices, were consistent with the formation of glycinebetaine via serine, ethanolamine and its methylated derivatives to choline with some control being exerted at the serine level. However a flux through the phosphorylated intermediates is not excluded.From a consideration of these results and the published data on barley subjected to water stress (Hanson and Scott, 1980 Plant Physiol. 66, 342–348) there appear to be significant differences in the biosynthetic pathways in spinach and barley.Abbreviations BHT butylated hydroxytoluerte (2,6-di-tert-butyl-4-methylphenol) - C1 one-carbon fragment - 1,2DG diglyceride moiety - DW day weight - MCW methanol-chloroform-water (12:5:1, by vol.) - PA phosphatidic acid - PC phosphatidyl choline - PMME phosphatidyl monomethylethanolamine - PDME phosphatidyl dimethylethanolamine - PE phosphatidyl ethanolamine - PPO 2,5-diphenyloxazole - POPOP 1,4-bis(5-phenyloxazoyl) benzene  相似文献   
125.
A stilbene synthase catalyzing the formation of resveratrol from 4-hydroxycinnamoyl-CoA and malonyl-CoA was found in the leaves of several Vitaceae. This stilbene synthase and two other enzymes functioning on the route from phenylalanine to stilbenes were induced concurrently upon irradiation of the leaves with UV light. With leaves of Cissus antarctica, an increase of stilbene synthase activity, more than hundred-fold, was observed with a maximum appearing 15 h after the induction with UV light.Abbreviations EDTA Na2-ethylenediaminotetraacetate - Hepes 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - Mes morpholinoethanesulfonic acid  相似文献   
126.
Dry lettuce (Lactuca sativa L.) seeds (achenes) contain -galactosidase (EC 3.2.122) at a level which is maintained in the imbibed dormant state in darkness. Both red light (R) and gibberellic acid promote an increase in enzyme activity several hours prior to the completion of germination. Germination and enzyme activity are not essentially linked, however, for the latter can increase while the former is inhibited. -Galactosidase activity increases within the cotyledons and the endosperm following R stimulation, but the axis is essential to perceive the stimulus and to promote and maintain the increase in enzyme activity. A diffusible factor (or factors) is produced by and-or released from irradiated axes, and it migrates to the cotyledons (and possibly endosperm) to promote the increase in -galactosidase activity. Gibberellic acid, particularly in the presence of benzyladenine, can replace the requirement for irradiated axes.Abbreviations GA3 gibberellic acid - R red light  相似文献   
127.
The filamentous cyanobacterium Oscillatoria chalybea grows phototrophically on a mineral medium in the presence of either nitrate or ammonium ions as nitrogen source at similar growth rates. In the absence of any combined nitrogen source in the medium the cyanobacterium also grows, although at a reduced growth rate. The steady state rate of oxygen evolution by filaments from these three culture conditions is approximately constant if compared on an equal chlorophyll basis. Qualitative differences, however, emerge, if transient phenomena, e.g. the oxygen gush, are investigated. Only nitrate-and nitrogen-free-grown cultures show an oxygen gush, whereas ammonium sulfate-grown cultures do not show this phenomenon. Fluorescence induction in O. chalybea shows a fast monophasic rise, comparable to the fluorescence rise curves of higher plant chloroplasts in the presence of dithionite. The steady state level of fluorescence in ammonium sulfate-grown cells is up to seven times higher than in nitrate-grown cells when compared on an equal chlorophyll basis. In ammonium sulfate-grown cells, DCMU (N,N-3,4-Dichlorophenyl dimethylurea) causes a further increase in fluorescence level. In nitrate-grown cyanobacteria, however, the effect of DCMU consists of a decrease of the steady state level of fluorescence. In context with earlier research on Anabaena cylindrica, another filamentous cyanobacterium, it appears that the type of the nitrogen source used for growth determines the main location of the DCMU-block in this organism. It thus appears that in O. chalybea the site of DCMU inhibition lies on the oxygen-evolving side of photosystem II, if the organism is grown on nitrate. If grown on ammonium sulfate, no substantial difference of the location of the inhibition site when compared to algae or higher plant chloroplasts is found.Thylakoid preparations of O. chalybea perform the usual Hill reactions with ferricyanide, p-benzoquinone or silicomolybdate as electron acceptors. In each case it is seen that with thylakoids of nitrate-grown cells the steady-state level of fluorescence is lowered by DCMU in the presence of these acceptors, which should be the case, if DCMU inhibits electron transfer on the donor side of photosystem II. According to the literature silicomolybdate accepts electrons mainly before the DCMU-block in higher plant chloroplasts. Hence, in higher plants this reaction is mainly DCMU-insensitive. In thylakoids of O. chalybea, however, the Hill reaction with silicomolybdate is DCMU-sensitive which provides further evidence that the DCMU-block is on the oxygen-evolving side of photosystem II in O. chalybea provided the cells have been grown on nitrate.Abbreviations DCMU N-N-3,4-Dichlorophenyl dimethylurea  相似文献   
128.
Rhodospirillum rubrum strain F24.1 is a spontaneous revertant of nonphototrophic mutant F24 derived from wild-type strain S1. Strain F24 shows no detectable photochemical activity and contains, at most, traces of the photoreaction center polypeptides. Strain F24.1 has a phototrophic growth rate close to that of the wild-type strain (Picorel, R., del Valle-Tascón, S. and Ramírez, J.M. (1977) Arch. Biophys. Biochem. 181, 665–670) but shows little photochemical activity. Light-induced absorbance changes in the near-infrared, photoinduced EPR signals and ferricyanide-elicited absorbance changes indicate that strain F24.1 has a photoreaction center content of 7–8% as compared to strain S1. Polyacrylamide gel electrophoresis of isolated F24.1 chromatophores shows the photoreaction center polypeptides to be present in amounts compatible with this value. Photoreaction center was prepared from strain F24.1 and showed no detectable difference with that of strain S1. It is concluded that strain F24.1 photosynthesis is due entirely to its residual 7–8% of typical photoreaction center.  相似文献   
129.
U. Schreiber 《BBA》1980,591(2):361-371
Phycobilin fluorescence of Anacystis nidulans grown at 28°C increases substantially upon cooling below 10°C. A maximal increase is found around ?5°C and amounts to 300%, with almost complete reversibility upon re-warming. Illumination with actinic light leads to considerable stimulation of the cold-induced phycobilin fluorescence increase. Analysis of the light stimulation phenomenon reveals: (1) Actinic illumination shifts the fluorescence-temperature characteristic by about 3°C upwards on the T-axis. At temperatures below 5°C the light stimulating effect becomes smaller again and fluorescence-temperature characteristics measured at high and low light intensity converge around ?5°C. (2) In the 13-8°C region a large (up to 100%) light-induced phycobilin fluorescence increase is observed, while only negligible changes occur in the dark. (3) 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea (DCMU) as well as uncouplers inhibit the light stimulation, which hence depends on coupled electron transport.In agreement with previous work (Schreiber, U. (1979) FEBS Lett. 107, 4–9) it is concluded that illumination enhances cold-induced phycobilisome detachment by increasing the net negative charge at the outer surface of the thylakoid membrane. The possible role of a fluid → ordered transition of membrane lipids (Murata, N. and Fork, D.C. (1975) Plant Physiol. 56, 791–796) is discussed.  相似文献   
130.
The segregation of isozymes of peroxidase and acid phosphatase in progenies of crosses between large (L) and small (S and L6) flax genotrophs has been determined. The peroxidase isozymes segregated as expected on a simple Mendelian model with a dominant and a recessive allele and with the L genotroph being a homozygous dominant. All the peroxidase isozymes which differed segregated together, so the isozymes are controlled by either a single locus or closely linked loci. The acid phosphatase isozymes in the F1 were all L type, but the segregations observed in the F2 were not always consistent with a simple Mendelian model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号