首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5101篇
  免费   378篇
  国内免费   234篇
  2024年   10篇
  2023年   54篇
  2022年   128篇
  2021年   177篇
  2020年   152篇
  2019年   164篇
  2018年   148篇
  2017年   130篇
  2016年   127篇
  2015年   222篇
  2014年   358篇
  2013年   363篇
  2012年   286篇
  2011年   495篇
  2010年   309篇
  2009年   272篇
  2008年   294篇
  2007年   267篇
  2006年   280篇
  2005年   212篇
  2004年   205篇
  2003年   150篇
  2002年   97篇
  2001年   75篇
  2000年   71篇
  1999年   83篇
  1998年   71篇
  1997年   47篇
  1996年   55篇
  1995年   63篇
  1994年   67篇
  1993年   36篇
  1992年   30篇
  1991年   31篇
  1990年   24篇
  1989年   23篇
  1988年   15篇
  1987年   14篇
  1986年   8篇
  1985年   11篇
  1984年   29篇
  1983年   14篇
  1982年   13篇
  1981年   7篇
  1980年   4篇
  1979年   6篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1972年   4篇
排序方式: 共有5713条查询结果,搜索用时 15 毫秒
101.
102.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.  相似文献   
103.
Exposure to various environmental stresses induces metabolic rate depression in many animal species, an adaptation that conserves energy until the environment is again conducive to normal life. The African clawed frog, Xenopus laevis, is periodically subjected to arid summers in South Africa, and utilizes entry into the hypometabolic state of estivation as a mechanism of long term survival. During estivation, frogs must typically deal with substantial dehydration as their ponds dry out and X. laevis can endure > 30% loss of its body water. We hypothesize that microRNAs play a vital role in establishing a reversible hypometabolic state and responding to dehydration stress that is associated with amphibian estivation. The present study analyzes the effects of whole body dehydration on microRNA expression in three tissues of X. laevis. Compared to controls, levels of miR-1, miR-125b, and miR-16-1 decreased to 37 ± 6, 64 ± 8, and 80 ± 4% of control levels during dehydration in liver. By contrast, miR-210, miR-34a and miR-21 were significantly elevated by 3.05 ± 0.45, 2.11 ± 0.08, and 1.36 ± 0.05-fold, respectively, in the liver. In kidney tissue, miR-29b, miR-21, and miR-203 were elevated by 1.40 ± 0.09, 1.31 ± 0.05, and 2.17 ± 0.31-fold, respectively, in response to dehydration whereas miR-203 and miR-34a were elevated in ventral skin by 1.35 ± 0.05 and 1.74 ± 0.12-fold, respectively. Bioinformatic analysis of the differentially expressed microRNAs suggests that these are mainly involved in two processes: (1) expression of solute carrier proteins, and (2) regulation of mitogen-activated protein kinase signaling. This study is the first report that shows a tissue specific mode of microRNA expression during amphibian dehydration, providing evidence for microRNAs as crucial regulators of metabolic depression.  相似文献   
104.
105.
Abstract

Accelerating the mortality of stoats (Mustela erminea) using biological agents, or reducing their fertility using chemosterilants or biological agents, are increasingly seen as more sustainable and more humane than trapping and poisoning. Obligate delayed implantation in fertilised female stoats of all ages allows 10–11 months for an applied biological agent or chemosterilant to interfere with gestation. Two chemosterilants (cabergoline and mifepristone) disrupt pregnancy in some species and may be effective on stoats, although they are not species‐specific and are probably more expensive than poisoning. For the longer term, more recent fertility control research has explored potentially more species‐specific options for other species based on inducing an immune response to an animal's own reproductive hormones, gametes, or products from embryos. Conception will be difficult to disrupt in stoats because females are sexually mature and are mated in the nest during a short period before they are weaned. A large research effort will be required to determine which of the immunosterilants being developed could be suitable candidates for stoat control. There are fewer options apparent for using biological agents to increase stoat mortality, although species‐specific strains of canine distemper virus may be effective against stoats.

The greatest impediment to controlling stoat fertility will be effective delivery of sterilants. For the foreseeable future, it will probably be necessary to rely on baits, but they are unlikely to put all target stoats at risk, and will be incapable of delivery over larger scales than at present.

Before undertaking expensive field trials and development of anti‐fertility and biological agents, the effects of putative compensatory changes in demographics that may be associated with changes in stoat density should be modelled to see if the sterilisation and mortality rates that are required to achieve a given level of population control are realistic targets. Also, population control should be defined in terms of accrued benefit for wildlife by establishing the relationships between stoat densities and the viability of prey populations.

Biological control of fertility or mortality may never be suitable as stand‐alone control options for stoats, particularly when some native fauna survive only if stoats are reduced to very low densities. Biological control may have greater potential when integrated with conventional control.  相似文献   
106.
The aim of this study was to investigate the association between C-reactive protein (CRP) gene polymorphism and metabolic syndrome (MetS) with premature coronary artery disease (PCAD). 116 patients with PCAD (58 with MetS and 58 without MetS) and 119 controls were included in the study. CRP gene + 1059 G>C polymorphism was analyzed by polymerase chain reaction. Serum hs-CRP was measured using high-sensitivity enzyme-linked immunosorbent assay. Carriers of C allele of the CRP + 1059 G>C polymorphism had 3.37 fold increased risk to develop MetS in patients with PCAD. In addition CRP gene and hs-CRP levels were independent risk factors for PCAD and MetS. The present study provides new evidence that the presence of CRP + 1059 G>C polymorphism and hs-CRP levels are independent determinants of PCAD and MetS in Egyptians. The results of our study suggest a synergistic effect of CRP C allele with classical risk factors such as hypertension, obesity, dyslipidemia and MetS.  相似文献   
107.
Lactobacillus plantarum BM‐1 isolated from a traditionally fermented Chinese meat product was found to produce a novel bacteriocin that is active against a wide range of gram‐positive and gram‐negative bacteria. Production of the bacteriocin BM‐1 started early in the exponential phase and its maximum activity (5120 AU/mL) was recorded early during the stationary phase (16 hr). Bacteriocin BM‐1 is sensitive to proteolytic enzymes but stable in the pH range of 2.0–10.0 and heat‐resistant (15 min at 121°C). This bacteriocin was purified through pH‐mediated cell adsorption–desorption and cation‐exchange chromatography on an SP Sepharose Fast Flow column. The molecular weight of the purified bacteriocin BM‐1 was determined to be 4638.142 Da by electrospray ionization Fourier transform mass spectrometry. Furthermore, the N‐terminal amino acid sequence was obtained through automated Edman degradation and found to comprise the following 15 amino acid residues: H2N‐Lys‐Tyr‐Tyr‐Gly‐Asn‐Gly‐Val‐Tyr‐Val‐Gly‐Lys‐His‐Ser‐Cys‐Ser. Comparison of this sequence with that of other bacteriocins revealed that bacteriocin BM‐1 contains the consensus YGNGV amino acid motif near the N‐terminus. Based on its physicochemical characteristics, molecular weight, and N‐terminal amino acid sequence, plantaricin BM‐1 is a novel class IIa bacteriocin.  相似文献   
108.
The phylogeny and diagenesis of Pleistocene and Recent bivalves were studied immunologically by use of a conventional antiserum elicited against an EDTA‐soluble macromolecular extract from shells of the modern bivalve mollusc Mercenaria mercenaria. ELISA tests of the antiserum with shell fragments of a wide range of modern bivalves gave taxonomically significant results. The antiserum reacted with palaeoheterodonts and heterodonts but not with representatives of other bivalve subclasses. This phylogenetic reactivity was also apparent in tests with fossil shells, although the specificity and overall strength of the reaction were both reduced. Absorption of the antiserum with etched shell powders of various (palaeo)heterodonts yielded more specific antibody preparations.

Investigations of shell matrix diagenesis, using the anti‐Mercenaria serum, demonstrated that small amounts of original determinants could be detected even in fossils over one million years old. The reactivity of the serum with extracts of fossil Mercenaria decreased with sample age. The relationship between serum reactivity and the degree of amino acid racemization was almost linear. Clearly, the various determinants to which antibodies were elicited were being destroyed at different rates.  相似文献   
109.
4-Hydroxynonenal (HNE) is the most studied end product of the lipoperoxidation process, by virtue of its relevant biological activity. The antiproliferative and proapoptotic effects of HNE have been widely demonstrated in a great variety of tumor cell types in vitro. Thus, it might represent a promising new molecule in anticancer therapy strategies. However, the extreme reactivity of this aldehyde, as well as its insolubility in water, a limiting factor for drug bioavailability, and its rapid degradation by specific enzymes represent major obstacles to its possible in vivo application. Various strategies can used to overcome these problems. One of the most attractive strategies is the use of nanovehicles, because loading drugs into nanosized structures enhances their stability and solubility, thus improving their bioavailability and their antitumoral effectiveness. Several natural or synthetic polymers have been used to synthesize nanosized structures and, among them, β-cyclodextrin (βCD) polymers are playing a very important role in drug formulation by virtue of the ability of βCD to form inclusion compounds with a wide range of solid and liquid molecules by molecular complexation. Moreover, several βCD derivatives have been designed to improve their physicochemical properties and inclusion capacities. Here we report that the inclusion complex of HNE with a derivative of βCD, the βCD–poly(4-acryloylmorpholine) conjugate (PACM-βCD), enhances the aldehyde stability. Moreover, the inclusion of HNE in PACM-βCD potentiates its antitumor effects in several tumor cell lines and in a more complex system, such as a human reconstructed skin carrying melanoma tumor cells.  相似文献   
110.
PHLPP1 (PH domain leucine-rich repeat protein phosphatase 1) is a protein-serine/threonine phosphatase and a negative regulator of the PI3-kinase/Akt pathway. Although its function as a suppressor of tumor cell growth has been established, the mechanism of its regulation is not completely understood. In this study, by utilizing the tandem affinity purification approach we have identified WDR48 and USP12 as novel PHLPP1-associated proteins. The WDR48·USP12 complex deubiquitinates PHLPP1 and thereby enhances its protein stability. Similar to PHLPP1 function, WDR48 and USP12 negatively regulate Akt activation and thus promote cellular apoptosis. Functionally, we show that WDR48 and USP12 suppress proliferation of tumor cells. Importantly, we found a WDR48 somatic mutation (L580F) that is defective in stabilizing PHLPP1 in colorectal cancers, supporting a WDR48 role in tumor suppression. Together, our results reveal WDR48 and USP12 as novel PHLPP1 regulators and potential suppressors of tumor cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号