Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated
with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding
the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase
(FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II
of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition
of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass
spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved
in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis. 相似文献
Cholesterol is an essential component of lysosomal membranes. In this study, we investigated the effects of membrane cholesterol on the permeability of rat liver lysosomes to K+ and H+, and the organelle stability. Through the measurements of lysosomal β-hexosaminidase free activity, membrane potential, membrane fluidity, intra-lysosomal pH, and lysosomal proton leakage, we established that methyl-β-cyclodextrin (MβCD)-produced loss of membrane cholesterol could increase the lysosomal permeability to both potassium ions and protons, and fluidize the lysosomal membranes. As a result, potassium ions entered the lysosomes through K+/H+ exchange, which produced osmotic imbalance across the membranes and osmotically destabilized the lysosomes. In addition, treatment of the lysosomes with MβCD caused leakage of the lysosomal protons and raised the intra-lysosomal pH. The results indicate that membrane cholesterol plays important roles in the maintenance of the lysosomal limited permeability to K+ and H+. Loss of this membrane sterol is critical for the organelle acidification and stability. 相似文献
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes. 相似文献
Seven-day-old leek seedlings actively synthesize lipids in vivo from [1-14C]acetate, both in the light and in the dark. In the dark, phospholipid synthesis is more effective than galactolipid synthesis. Whatever the time of acetate incorporation by the etiolated seedlings, very long chain fatty acids having from 20 to 26 carbon atoms are found in all the polar lipids, including the acyl-CoAs. All of the labelled very long chain fatty acids incorporated into the polar lipids are saturated. On the other hand, the labelled C18-fatty acids are unsaturated in phospholipids and galactolipids and almost no label is found in the saturated or unsaturated C18-fatty acids of the acyl-CoAs. 相似文献
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (Km=10μM at pH 5.0, 64 μM at pH 6.5). The Km for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression. 相似文献
Context: Topical treatment of skin disease needs to be strategic to ensure high drug concentration in the skin with minimum systemic absorption.
Objective: The aim of this study was to produce semisolid nanostructured lipid carrier (NLC) formulations, for topical delivery of the corticosteroid drug, diflucortolone valerate (DFV), with minimum systemic absorption.
Method: NLC formulations were developed using a high shear homogenization combined with sonication, using Precirol® ATO5 or Tristearin® as the solid lipid, Capryol? or isopropyl myristate as the liquid lipid and Poloxamer® 407 as surfactant. The present study addresses the influence of different formulations composition as solid lipid, liquid lipid types and concentrations on the physicochemical properties and drug release profile from NLCs.
Results and discussion: DFV-loaded NLC formulations possessed average particle size ranging from 160.40?nm to 743.7?nm with narrow polydispersity index. The encapsulation efficiency was improved by adding the lipid-based surfactants (Labrasol® and Labrafil® M1944CS) to reach 68%. The drug release from the investigated NLC formulations showed a prolonged release up to 12?h. The dermatopharmacokinetic study revealed an improvement in drug deposition in the skin with the optimized DFV-loaded NLC formulation, in contrast to a commercial formulation.
Conclusion: NLC provides a promising nanocarrier system that work as reservoir for targeting topical delivery of DFV. 相似文献