首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1332篇
  免费   37篇
  国内免费   19篇
  1388篇
  2024年   1篇
  2023年   11篇
  2022年   9篇
  2021年   15篇
  2020年   24篇
  2019年   52篇
  2018年   69篇
  2017年   16篇
  2016年   20篇
  2015年   41篇
  2014年   113篇
  2013年   99篇
  2012年   95篇
  2011年   147篇
  2010年   98篇
  2009年   71篇
  2008年   60篇
  2007年   71篇
  2006年   57篇
  2005年   53篇
  2004年   46篇
  2003年   37篇
  2002年   27篇
  2001年   15篇
  2000年   16篇
  1999年   13篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   16篇
  1993年   8篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1985年   3篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1388条查询结果,搜索用时 15 毫秒
81.
Lipid-laden foam macrophages are emerging as key players in early atherogenesis. Even though cytoplasmic lipid bodies (lipid droplets) are now recognized as organelles with cell functions beyond lipid storage, the mechanisms controlling lipid body biogenesis within macrophages and their additional functions in atherosclerosis are not completely elucidated. Here we studied oxLDL-elicited macrophage machinery involved in lipid body biogenesis as well as lipid body roles in leukotriene (LT) synthesis. Both in vivo and in vitro, oxLDL (but not native LDL) induced rapid assembly of cytoplasmic lipid bodies-bearing ADRP within mice macrophages. Such oxLDL-elicited foamy-like phenotype was a pertussis toxin-sensitive process that depended on a paracrine activity of endogenous MCP-1/CCL2 and activation of ERK. Pretreatment with neutralizing anti-MCP-1/CCL2 inhibited macrophage ADRP protein expression induced by oxLDL. By directly immuno-localizing leukotrienes at their sites of synthesis, we showed that oxLDL-induced newly formed lipid bodies function as active sites of LTB4 and LTC4 synthesis, since oxLDL-induced lipid bodies within foam macrophages compartmentalized the enzyme 5-lipoxygenase and five lipoxygenase-activating protein (FLAP) as well as newly formed LTB4 and LTC4. Consistent with MCP-1/CCL-2 role in ox-LDL-induced lipid body biogenesis, in CCR2 deficient mice both ox-LDL-induced lipid body assembly and LT release were reduced as compared to wild type mice. In conclusion, oxLDL-driven foam cells are enriched with leukotriene-synthesizing lipid bodies – specialized organelles whose biogenic process is mediated by MCP-1/CCL2-triggered CCR2 activation and ERK-dependent downstream signaling – that may amplify inflammatory mediator production in atherosclerosis.  相似文献   
82.
The apoptosis of bone marrow-derived mast-cells (BMMCs) after growth factor withdrawal was significantly prevented by a high concentration of IgE in the absence of antigen, and further enhanced by the presence of Toll-like receptor4 (TLR4) ligand, lipopolysaccharide (LPS). The effect of LPS was mediated by TLR4, since TLR4-deficient BMMCs did not show synergistic effects with IgE. The neutralizing amount of anti-IL-3 did not reverse the anti-apoptotic effects of both IgE and combination with LPS. LPS treatment with monomeric IgE synergistically prevented the loss of mitochondrial membrane potentials and was associated with an enhanced expression of anti-apoptotic protein, Bcl-xL, or with a reduced expression of proapoptotic protein, Puma, and Bim, respectively. Altogether, these results suggest that LPS, in a TLR4-dependent manner, together with IgE, synergistically prevent mast-cell apoptosis and may contribute to regulate the tissue mast-cell number.  相似文献   
83.
The regulatory NEMO (NF-κB essential modulator) protein has a crucial role in the canonical NF-κB signaling pathway notably involved in immune and inflammatory responses, apoptosis and oncogenesis. The regulatory domain is located in the C-terminal half of NEMO and contains a classical CCHC-type zinc finger (ZF). We have investigated the structural and functional effects of a cysteine to phenylalanine point mutation (C417F) in the ZF motif, identified in patients with anhidrotic ectodermal dysplasia with immunodeficiency. The solution structures of the wild type and mutant ZF were determined by NMR. Remarkably, the mutant adopts a global ββα fold similar to that of the wild type and retains thermodynamic stability, i.e., the ability to bind zinc with a native-like affinity, although the last zinc-chelating residue is missing. However, the mutation induces enhanced dynamics in the motif and leads to an important loss of stability. A detailed analysis of the wild type solution structure and experimental evidences led to the identification of two possible protein-binding surfaces that are largely destabilized in the mutant. This is sufficient to alter NEMO function, since functional complementation assays using NEMO-deficient pre-B and T lymphocytes show that full-length C417F pathogenic NEMO leads to a partial to strong defect in LPS, IL-1β and TNF-α-induced NF-κB activation, respectively, as compared to wild type NEMO. Altogether, these results shed light onto the role of NEMO ZF as a protein-binding motif and show that a precise structural integrity of the ZF should be preserved to lead to a functional protein-recognition motif triggering full NF-κB activation.  相似文献   
84.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   
85.
The time-course of incorporation of NBD-cholesterol by macrophages (Ma) and lymphocytes (LY) obtained from untreated and thioglycollate-injected (thio) rats was investigated. NBD-cholesterol incorporation was also examined in Ma obtained from untreated rats and stimulated in vitro by lipopolysaccharide (LPS) and phorbol-myristate acetate (PMA). The same measurement was performed in LY from untreated rats stimulated by addition of LPS and concanavalin A (Con A) into the culture medium. Thio-treated Ma showed high fluorescence intensity after 1 h of incubation with NBD-cholesterol. Ma submitted concomitant to LPS and NBD-cholesterol showed low fluorescence intensity, as well as Ma stimulated with PMA. Ma from untreated and LPS pre-treated rats showed a similar time-course of incorporation. LY from thio-treated rats showed lower incorporation of NBD-cholesterol in comparison to LY from untreated rats. Incorporation was reduced when LPS was added concomitantly with NBD-cholesterol. On the other hand, LY pre-treated with LPS for 48 h showed a very high incorporation of NBD-cholesterol. Con A treatment did not cause a significant effect on NBD-cholesterol incorporation. The findings presented herein led us to conclude that the uptake of NBD-cholesterol by Ma and LY is markedly affected by the activation state of the cells.  相似文献   
86.
87.
目的:探讨心房钠尿肽(ANP)对内毒素血症大鼠(ETR)肺动脉和主动脉内皮和平滑肌细胞的调节作用.方法:24只雄性SD大鼠随机分为对照组,模型组(LPS组),治疗组(ANP组).各组分别静脉注射生理盐水、2 mg/kg的LPS和2 mg/kg LPS与2μg/kg的ANP,4 h后处死动物分离肺动脉、主动脉,进行离体血管务体外灌注实验.结果:LPS组、ANP治疗组主动脉环和LPS组肺动脉环对去甲肾上腺素(NE)引起的收缩作用在NE低浓度时较对照组减弱(P<0.01),在较高浓度时较对照组均明显增强(P<0.01);主动脉环ANP治疗组与LPS组无显著差异(P>0.05);肺动脉环ANP治疗组与对照组相比无显著差异(P>0.05).ANP可明显改善ETR离体主动脉和肺动脉对乙酰胆碱(ACh)的舒张反应(P<0.01),ANP可提高ETR离体主动脉和主动脉环对硝普钠(SNP)引起的舒张反应的敏感性(P<0.01).结论:ANP对ETR肺动脉和主动脉内皮和平滑肌细胞可能存在调节作用.  相似文献   
88.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   
89.
90.
3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) is a constituent of the inner core part of bacterial lipopolysaccharides (LPS). This sugar may contribute to biological activities of the LPS, the type of substitution of Kdo is thus of importance and this work is aimed at the evaluation of a method for monitoring the substitution of Kdo in LPS. The procedure consists of three steps, namely permethylation of the lipopolysaccharide, with iodomethane and sodium methylsulfinylmethanide or NaOH in Me(2)SO, or with methyl triflate, then the product is methanolysed with HCl in MeOH and acetylated with acetic anhydride in pyridine. The resulting partially methylated acetates of Kdo methyl glycosides were analyzed by gas-liquid chromatography-electron impact ionization mass spectrometry (GLC-MS). For several derivatives of Kdo, specific GLC retention times and MS fragmentation patterns were determined. Lipopolysaccharides from several bacterial strains were isolated and analyzed with three different methods of methylation. The complete solubilization of the LPS in the acid form allows diminishing possible undermethylation. Sodium methylsulfinylmethanide is the most efficient agent in the permethylation of the whole LPS, of all the tested procedures. Methylation with methyl triflate allows the detection of base labile substituents on Kdo residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号