首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1324篇
  免费   39篇
  国内免费   19篇
  2024年   1篇
  2023年   11篇
  2022年   3篇
  2021年   15篇
  2020年   24篇
  2019年   52篇
  2018年   69篇
  2017年   16篇
  2016年   20篇
  2015年   41篇
  2014年   113篇
  2013年   99篇
  2012年   95篇
  2011年   147篇
  2010年   98篇
  2009年   71篇
  2008年   60篇
  2007年   71篇
  2006年   57篇
  2005年   53篇
  2004年   46篇
  2003年   37篇
  2002年   27篇
  2001年   15篇
  2000年   16篇
  1999年   13篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   16篇
  1993年   8篇
  1992年   6篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1985年   3篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有1382条查询结果,搜索用时 15 毫秒
21.
The purpose of this study was to investigate the biological effect of miR‐16 on myocarditis and the underlying molecular mechanism. H9c2 cells were treated with 10 µg/mL lipopolysaccharide (LPS) for 12 hours to form a myocarditis injury model. We observed that LPS treatment distinctly decreased the level of miR‐16 in H9c2 cells. Upregulation of miR‐16 increased cell proliferation and reduced cell apoptosis. Then, CD40 was predicted and verified as a target gene of miR‐16 by TargetScan and luciferase reporter assay, respectively. Furthermore, the messenger RNA and protein expression of CD40 are negatively regulated by miR‐16. The relative expression of inflammatory factors was dramatically decreased by the miR‐16 mimic. Cells cotransfected with miR‐16 mimic and si‐CD40 could significantly abolish the injury of cardiomyocytes caused by myocarditis. Our study illustrated that the upregulation of miR‐16 has a protective effect on LPS‐damaged H9c2 cells, which may be achieved by regulating CD40 and the nuclear factor kappa B pathway.  相似文献   
22.
In the present study, we used microRNA (miRNA) sequencing to discover and explore the expression profiles of known and novel miRNAs in 1000 ng/ml LPS stimulated for 8 h vis-à-vis non-stimulated (i.e. control) PBMCs isolated from the blood of healthy pigs. A total of 291 known miRNAs were bio-computationally identified in porcine PBMCs, and 228 novel miRNAs (not enlisted in the swine mirBase) were identified. Among these miRNAs, ssc-miR-148a-3p, ssc-let-7g, ssc-let-7f, 3_8760, ssc-miR-26a, ssc-miR-451, ssc-miR-21, ssc-miR-30d, ssc-miR-99a and ssc-miR-103 were the top 10 most abundant miRNAs in porcine PBMCs. Through miRNA differential analysis combined with quantitative PCR, we found the expressions of ssc-miR-122, ssc-miR-129b, ssc-miR-17-5p and ssc-miR-152 were significantly changed in porcine PBMCs after LPS stimulation. Furthermore, targets prediction and function analysis indicated a significant enrichment in gene ontology functional categories related to diseases, immunity and inflammation. In conclusion, this study on profiling of miRNAs expressed in LPS-stimulated PBMCs provides an important reference point for future studies on regulatory roles of miRNAs in porcine immune system.  相似文献   
23.
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.  相似文献   
24.
目的:验证重组人BD3-BPI(rhBD3-BPI)是否具有内毒素中和活性,研究其在高盐环境中是否能保持抗菌活性。方法:根据内毒素标准品绘制内毒素活性标准曲线,将100 μL梯度稀释的rhBD3-BPI-与100 μL 10EU/mL脂多糖(LPS)混匀,37℃水浴60min,同时设标准对照(只含10EU/mL LPS的标准品溶液),并以无热源水作为空白对照,采用基质显色法进行鲎试验测定LPS的活性;将6×10^8 CFU/mL的革兰阳性和阴性标准菌株及临床分离的多药耐药菌株接种于含1mg/mL rhBD3-BPI和0~250mmol/L不同浓度NaCl的液体细菌培养基中,37℃培养3h后用10mmol/L磷酸钠按1:1~1:1000的比例稀释,铺LB培养基平板,37℃过夜培养,观察各平板菌落生长情况,计数并计算杀菌率。结果:在5EU/mL的标准内毒素体系中,当rhBD3-BPI的浓度高于4μg/mL时即开始表现出一定的内毒素中和活性,当rhBD3-BPI的浓度分别为16、32 μg/mL时,其内毒素中和率分别为23%和88%,随后rhBD3-BPI对内毒素的中和活性趋于平稳,50 μg/mL的rhBD3-BPI对所有受检菌均表现出100%的杀伤效应。当NaCl浓度低于150mmol/L时,rhBD3-BPI对各受检菌的杀菌活性均未受明显影响;NaCI浓度升高至150-200mmol/L,rhBD3-BPI对各受检菌的杀菌活性有所下降,但其杀伤率仍在90%以上;当NaCl浓度高于200mmol/L时,盐浓度对rhBD3-BPI杀菌活性的影响才较为明显,但即使NaCl浓度达到250mmol/L,rhBD3-BPI的杀菌活性仍保持在85%以上。结论:rh-BD3-BPI具有内毒素中和活性,在高盐环境中具有良好的抗菌活性稳定性。  相似文献   
25.
We recently reported that Adenosine-5′-triphosphate (ATP) is able to inhibit the inflammatory reaction in stimulated whole blood. Many diseases, in which inflammatory reactions are involved, are associated with oxidative stress. In the present study, we therefore, investigated the effect of ATP on cytokine release in stimulated whole blood under conditions of oxidative stress, as simulated by pre-incubation of blood with hydrogen peroxide (H2O2). In the presence of H2O2, ATP at concentrations of 100 and 300 μM inhibited Tumour Necrosis factor-alpha (TNF-α) release and stimulated IL-10 release in LPS-PHA stimulated whole blood. Moreover, electron spin resonance (ESR) measurements showed that ATP and its breakdown product Adenosine-5′-diphosphate (ADP) attenuated spin trap-hydroxyl radical adduct formation in the Fenton reaction. Our results demonstrate that even in circumstances of severe oxidative stress, ATP has marked anti-inflammatory properties in stimulated whole blood. Moreover, the inhibition of the hydroxyl radical ESR signal indicates a direct attenuation of oxidative stress by ATP.  相似文献   
26.
Lipopolysaccharide (LPS), also known as endotoxin, is the primary trigger of sepsis, which is associated with high mortality in patients. No therapeutic agents are currently efficacious enough to protect patients from sepsis characterized by LPS-mediated tissue damage and organ failure. Previously, a phosvitin-derived peptide, Pt5, which consists of the C-terminal 55 residues of zebrafish phosvitin, has been shown to function as an antibacterial agent. In this study, we have generated six mutants by site-directed mutagenesis based on the sequence of Pt5, and found that one of the six mutants, Pt5e, showed the strongest bactericidal activities against Escherichia coli and Staphylococcus aureus. We then demonstrated that Pt5e was able to bind to LPS and lipoteichoic acid (LTA). More importantly, we showed that Pt5e significantly inhibited LPS-induced tumor-necrosis factor (TNF)-α and interleukin (IL)-1β release from murine RAW264.7 cells and considerably reduced serum TNF-α and IL-1β levels in mice. Additionally, Pt5e protected the liver from damage by LPS, and remarkably promoted the survival rate of the endotoxemia mice. Furthermore, Pt5e displayed no cytotoxicity to murine RAW264.7 macrophages and no hemolytic activity toward human red blood cells. These data together indicate that Pt5e is an endotoxin-neutralizing agent with a therapeutic potential in clinical treatment of LPS-induced sepsis.  相似文献   
27.
An investigation on the secondary metabolites from the BuOH extract of the fermentation broth of the thermotolerant polyester‐degrading actinomycete Actinomadura miaoliensis BCRC 16873 was carried out. One previously undescribed α‐pyrone (=pyran‐2‐one) derivative, designated as miaolienone ( 1 ), and a new butanolide, miaolinolide ( 2 ), together with 13 known compounds, 3 – 15 , were obtained. Their structures were established on the basis of extensive 1D‐ and 2D‐NMR analyses in combination with HR‐MS experiments. In addition, the isolated compounds 1 – 15 were evaluated for the inhibitory effects of the isolates on the production of tumor necrosis factor (TNF‐α) induced by lipopolysaccharide (LPS). Among the isolates, 1 and 2 significantly inhibited TNF‐α production in U937 cells in vitro, and the IC50 values were 0.59 and 0.76 μM , respectively. Compounds 3 – 5 displayed moderate inhibitory activities on LPS‐induced TNF‐α production.  相似文献   
28.
TRPV1 and TRPA1 are cation channels that play key roles in inflammatory signaling pathways. They are co-expressed on airway C-fibers, where they exert synergistic effects on causing inflammation and cough. Licorice, the root of Glycyrrhiza uralensis, has been widely used in China as an anti-inflammatory and anti-coughing herb. To learn if TRPV1 and TRPA1 might be key targets of the anti-inflammatory and antitussive effects of licorice, we examined liquiritin, the main flavonoid compound and active ingredient of licorice, on agonist-evoked TRPV1 and TRPA1 activation. Liquiritin inhibited capsaicin- and allyl isothiocyanate-evoked TRPV1 and TRPA1 whole-cell currents, respectively, with a similar potency and maximal inhibition. In a mouse acute lung injury (ALI) model induced by the bacterial endotoxin lipopolysaccharide, which involves both TRPV1 and TRPA1, an oral gavage of liquiritin prevented tissue damage and suppressed inflammation and the activation of NF-κB signaling pathway in the lung tissue. Liquiritin also suppressed LPS-induced increase in TRPV1 and TRPA1 protein expression in the lung tissue, as well as TRPV1 and TRPA1 mRNA levels in cells contained in mouse bronchoalveolar lavage fluid. In cultured THP-1 monocytes, liguiritin, or TRPV1 and TRPA1 antagonists capsazepine and HC030031, respectively, diminished not only cytokine-induced upregulation of NF-κB function but also TRPV1 and TRPA1 expression at both protein and mRNA levels. We conclude that the anti-inflammatory and antitussive effects of liquiritin are mediated by the dual inhibition of TRPV1 and TRPA1 channels, which are upregulated in nonneuronal cells through the NF-κB pathway during airway inflammation via a positive feedback mechanism.  相似文献   
29.
30.
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号